MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBB9E2.88947620" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="utf-8"

Evaluación de una Intervención Psicoterapéutica= Basada en Psicología Positiva sobre el Bienestar Psicológico de Jóvenes Futboli= stas: Un Estudio Cuasi-Experimental.

 

Evaluation of a Psychotherape= utic Intervention Based on Positive Psychology on the Psychological Well-being of Youth Footballers: A Quasi-Experimental Study.

Anthony Quirós Rose= 1 & Jay Molino1*

 =

1Faculty of Biosciences and Public Health, Universidad Especializada de las Americas, Corregimiento de Ancón, Albrook, Paseo de la Iguana, Panama, 0843-0141.

 

*Autor por correspondencia: Jay Molino, = jay.molino@u= delas.ac.pa

Recibido: 15 de noviembre de 2024

 Acepta= do: 15 de enero de 2025

 

Resumen

El presente estudio cuasi-experimental investigó los efectos de una intervención psicoterapéutica basada en Psi= cología Positiva sobre el bienestar psicológico de los jugadores juveniles del club Plaza Amador sub-18. La intervención, diseñada para fortalecer la autoaceptación y el crecimiento personal, fue evaluada utilizando la Escal= a de Bienestar de Ryff antes y después de su implementación. Participaron diez jugadores jóvenes, quienes experimentaron talleres y actividades enfocadas= en mejorar las relaciones interpersonales y el desarrollo personal. A pesar de= las expectativas optimistas, los resultados post-intervenc= ión no revelaron cambios estadísticamente significativos en los puntajes de bienestar psicológico. Este hallazgo sugiere que, aunque la intervención = fue bien recibida y mostró tendencias positivas, su impacto en los indicadores medidos de bienestar psicológico no fue significativo. El estudio resalta = la complejidad de abordar el bienestar psicológico en jóvenes deportistas y subraya la importancia de investigar métodos más efectivos para mejorar la salud mental en este grupo demográfico.

 

Palabras clave: psicología deportiva, bienestar psicológico, psico= logía positiva, jugadores de fútbol juvenil, intervención psicoterapéutica, es= tudio cuasi-experimental

 

 


Abstract

 

The present quasi-experimental study investigated the effects of a psychotherapeutic intervention based on Posit= ive Psychology on the psychological well-being of the youth players from the Pl= aza Amador under-18 club. The intervention, designed to strengthen self-accepta= nce and personal growth, was evaluated using Ryff's Well-Being Scale before and after its implementation. Ten young players participated and experienced workshops and activities focused on improving interpersonal relationships and personal development. Despite optimistic expectations, post-intervention results did not reveal statistically significant changes in psychological well-being scores. This finding sugges= ts that, although the intervention was well received and showed positive trend= s, its impact on the measured indicators of psychological well-being was not significant. The study highlights the complexity of addressing psychological well-being in young athletes and underlines the importance of researching m= ore effective methods to improve mental health in this demographic group.<= /o:p>

Keywords: sport psychology, psychological well-being, positive psychology, youth soccer players, psychotherapeutic intervention, quasi-experimental study

Introduction

 

The field of sports psychology has = become increasingly important, particularly in its focus on the relationship betwe= en psychological well-being and athletic performance. This discipline explores= how psychological factors influence sports performance and how physical activity impacts an individual's overall well-being (S.J.H Biddle, 2015). Research in this area has underscored the significance of mental health for athletes, pointing to a critical need for effective interventions, especially for young athletes (Daniel Parnell, 2017).

Some young athletes are already high-performance competitors in their respective sports, while others stand= out as promising athletes compared to their peers. In both cases, these young athletes put in much effort, dedicating many hours most days of the year. T= hey must also balance their studies and other age-appropriate activities. Many = of these young athletes even drop out of school to focus solely on sports  (Buceta, Mi hijo es el mejo= r y ademas es mi hijo, 2015). These challenges can negatively impact their psychological well-being, manifesting in symptoms of anxiety, stress, and, = in some cases, depression. Milagros Ezquerro, in 2= 006 and 2010, addressed the challenges of clinical psychology in sports, emphasizing the need better to understand disorders and their relationship = to sports performance. She also highlighted the importance of defining specific diagnostic criteria to distinguish between what is expected and pathologica= l in the high-performance athlete population (Garcìa-Noblejas, 2016)

Given that psychological well-being= is essential for quality of life and sports performance, it is crucial to addr= ess psychopathological disturbances. In some cases, athletes' psychopathological disturbances may arise from causes unrelated to their sports activities, su= ch as depression due to the death of a family member. However, in other cases, these disturbances can result from a state of vulnerability or factors rela= ted to their sports activities or the environment surrounding them  (Buceta, Psicologìa Clìni= ca en el Deporte de Competiciòn, 2015)

According to Pineda-Espejel, Morquecho-Sánchez, and Ga= dea-Cavazos (2018), the validity of the Multidimensional Perfectionism in Sport Scale-2 highlights the need to evaluate its psychometric properties in different sa= mples of athletes  (Pineda-Espejel, Morquecho-Sánchez, &= amp; Gadea-Cavazos, 2018)

In a study offering an alternative perspective in sports psychology, Soto-Lagos, Pozo-Gómez, and Romero-Ãlvarez (2020) emphasize the importance of considering all soci= al, cultural, and historical contexts involved in sports practice (Soto-Lagos, Pozo-Gómez, & Romero-Ãlvarez)

Internationally, FIFA has launched a campaign called #REACHOUT, designed to raise awareness about mental health symptoms and encourage people to seek help. This support is being achieved = with the help of retired and current football players who emphasize the importan= ce of mental health awareness (FIFA, 2021).

In line with this, FIFPRO launched = its program to raise awareness about mental health among football players under= the slogan "Are you ready to talk?" Their research showed that up to = 38% of football players experience some form of psychopathology during their careers. With the onset of the COVID-19 pandemic, the number of players fac= ing mental health issues has increased  (FIFPRO, 2021).

In a survey conducted in 2019, the = majority of football players reported experiencing mental health symptoms and their negative impact on performance. Consequently, FIFPRO's Chief Medical Office= r, Dr. Vincent Goutterbarge, requested that all pl= ayer unions establish a network to identify and refer footballers for appropriate support from specialists (FIFPRO, 2021).

This study focuses on a psychothera= peutic intervention designed to improve the psychological well-being of the under-= 18 youth football players at Club Plaza Amador. Football, at the regional confederation level, comprises 35 associations, and Panama has 396 professi= onal players, according to FIFA's professional football report in 2023. Since football has high physical and psychological demands and is one of the most widely practiced sports globally, it provides a relevant context for this research (FIFA, 2023).

Elite athletes practice high-perfor= mance sports, whether they are young or more experienced. Young athletes engage in activities to prepare for elite levels or stand out in their age group, whi= ch can also be considered high-performance (Buceta, Psicologìa del deporte de alto rendimiento, 2020).

Psychological intervention in sport= s, especially football, is increasingly becoming a normalized demand. The psychological aspect of sports training, being relatively recent, is rapidly being incorporated to help efficiently manage all aspects of football train= ing (David Peris-Delcampo, 2018).

The need to prevent psychopathologi= cal disorders makes psychological work a fundamental part of an athlete's train= ing, encompassing various aspects of the player with the primary objective of neutralizing the apparent risks that competition entails. This psychological work can optimize athletes' performance and prevent mental health issues. Furthermore, preserving athletes' health also positively impacts their performance potential, helping them achieve the psychological balance neces= sary to perform at their best. To achieve it, therapeutic strategies and procedu= res commonly used in psychology must be adapted to the needs and circumstances = of each athlete  (Buceta, Psicologìa Clìnica en el Deporte de Competiciòn, 2015).

The intervention is based on the pr= inciples of Positive Psychology, an approach explained by Nanso= ok Park (2013), citing Seligman and Csikszentmihalyi (2000). This modern appro= ach to psychology studies what makes life worthwhile, analyzing what goes well = from birth to death. It examines positive and optimal experiences where people g= ive their best. The scientific evidence of positive psychology aims to contribu= te to a scientific and balanced understanding of human experience, helping individuals build healthy, productive, and meaningful aspects of life and repair imbalances.

Based on the considerations above, = as human beings, we experience a series of highs and lows that result in peaks and d= eep valleys. Positive psychology acknowledges the suffering humans may endure. = Its balanced proposition states that both the good and the bad are fundamental,= and psychologists should pay attention to both (Nansook Park, 2013).

Pursuing psychological well-being i= n sports is one of the most essential objectives today, as reflected in studies on t= he benefits of sports and physical activity for health  (Rebeca Liberal, 2014).

Psychological well-being is perceiv= ed as a pleasant state related to the balance of our organism. The construct of psychological well-being is multidimensional, encompassing physical, psychological, and social aspects, and it refers to what Seligman in 2003 called Positive Psychology (Rebeca Liberal, 2014).

The objective of this study was to = evaluate the effectiveness of a psychotherapeutic intervention on the psychological well-being of these young athletes. The hypothesis was that such an intervention would significantly improve their psychological well-being, measured through psychometric scales established by The Psychological Well-Being Scale designed in 1995 and adapted and validated by Diaz in 2006=  (Rebeca Liberal, 2014). A quasi-experimental design with = pretest and posttest measurements was used to provide empirical evidence on the effectiveness of psychotherapeutic interventions on the well-being of young athletes.

This study's results can potentiall= y inform and improve the practices of coaches, sports psychologists, and other professionals working with young athletes. By highlighting the importance of addressing psychological well-being, this study contributes to developing a parallel between sports and life, as argued by Romero, García-Más, and Br= ustad (2009) cited by (Rebeca Liberal, 2014).

During the search conducte= d in our country for studies similar to our knowledge, this study was pioneered in Panama.

Methodology

A longitudinal quasi-experimental design articul= ated through a pretest-posttest measurement methodology was chosen to investigate the therapeutic effects of a psychotherapeutic intervention accurately focu= sed on Positive Psychology constructs on the psychological well-being of young athletes in the football context. Based on cognitive-behavioral strategies = and techniques for strengthening internal resources, such as self-efficacy, emotional resilience, and optimizing flow states, this intervention was directed at 10 Plaza Amador U18 youth team members. The demographic and spo= rts characteristics of the participants, including age, football experience, and other relevant factors, were recorded.

The selection of a quasi-experimental design was driven by the intention to approximate experimental rigor within the contex= tual and ethical limitations inherent in the sports domain, allowing for the systematic evaluation of pre- and post-intervention changes in specific psychological dimensions. This evaluation was carried out using standardized and validated psychometric instruments within sports psychology, such as th= e Ryff Psychological Well-Being Inventory and the Brune= l Mood Scale (BRUMS), ensuring objectivity and reliability in measuring the constr= ucts of interest. The quantitative analysis of the variations in the scores obta= ined will allow for inferring the efficacy of the intervention, contributing to = the body of knowledge on effective psychotherapeutic practices in optimizing the performance and well-being of young athletes.

 <= /span>

Psyc= horapeutic Intervention

Positive psychology was used, focusing on self-acceptance, personal growth, and strengthening interpersonal relationships. The sessions, which included workshops and group activities, will be detailed, as well as the duration and frequency of these sessions.<= o:p>

Statistical Analys= is

The Shapiro-Wilk test is used to determine the a= dherence to normality of the data distribution. Confirming this premise is crucial to validate the application of subsequent parametric techniques. Consequently,= the paired sample Student's t-test will be implemented to compare the mean psychological well-being scores before and after the intervention. This test will provide statistical evidence on the existence of significant changes in the psychological well-being of the participants. Additionally, effect size measures, specifically Cohen's d, will be calculated to estimate the magnit= ude of these changes, offering a quantitative perspective on the efficacy of the intervention. A repeated measures Analysis of Variance (ANOVA) will also be conducted to evaluate statistically significant differences in psychological well-being scores across multiple time points.

Ethical Procedures= and Informed Consent

The quasi-experimental study ensured ethical adh= erence through the informed consent of the participants, following strict guidelin= es to protect their rights. Precise inclusion and exclusion criteria were appl= ied to select Panamanian football players aged 15 to 18, ensuring a representat= ive sample for the research.

Results

Pretest= and Post Test.

Tables 1 and 2 presen= t the quantitative results of the pretest and posttest, respectively, illustrating the variations i= n the participants' psychological well-being due to the intervention. These tables facilitate the comparative descriptive statistical analysis of well-being measures before and after the implemented program, as shown in Table 3=

 


Table 1: Pretest Evaluation and Well-being Level of E= ach Player.

Pre test each Player

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 9

Player 10

= Dimensiones

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

Self-Acceptance

21

Medium

= 31

= High

= 26

= Medium

= 24

= Medium

= 26

= Medium

= 24

= Medium

= 29

= High

= 24

= Medium

= 24

= Medium

= 27

= High

Environmental Mastery

18

Medium

= 22

= Medium

= 27

= High

= 16

= Low

= 19

= Medium

= 31

= High

= 27

= High

= 22

= Medium

= 22

= Medium

= 24

= Medium

Positive Relations

14

Low

= 31

= High

= 21

= Medium

= 20

= Medium

= 24

= Medium

= 14

= Low

= 22

= Medium

= 21

= Medium

= 21

= Medium

= 20

= Medium

Personal Growth

23

Medium

= 39

= High

= 31

= Medium

= 26

= Medium

= 35

= High

= 29

= Medium

= 29

= Medium

= 27

= Medium

= 27

= Medium

= 28

= Medium

Autonomy=

17

Low

= 37

= High

= 24

= Medium

= 24

= Medium

= 34

= Medium

= 26

= Medium

= 33

= Medium

= 22

= Low

= 22

= Low

= 28

= Medium

Purpose in Life

22

Medium

= 35

= High

= 28

= High

= 28

= High

= 31

= High

= 28

= High

= 31

= High

= 28

= High

= 28

= High

= 27

= High

 

 <= /o:p>

 <= /o:p>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Psychological well-being grade Pre-intervention

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 9

Player 10

Range

115

195

157

138

169

152

171

144

151

154

Level

Low

Elevated<= /span>

High

Moderate

High

High

High

High

High

High

 

 

 

 

 

 

 

 

Table 2: Posttest Evaluation and Well-being Level of Each Player

Post test of each Player

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 9

Player 10

= Dimensiones

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

= Σ

Level

Self-Acceptance

23<= /o:p>

Medium

30<= /o:p>

High

30<= /o:p>

High

27<= /o:p>

High

29<= /o:p>

High

30<= /o:p>

High

30<= /o:p>

High

23<= /o:p>

Medium

25<= /o:p>

Medium

24<= /o:p>

Medium

Environmental Mastery

20<= /o:p>

Medium

26<= /o:p>

Medium

25<= /o:p>

Medium

22<= /o:p>

Medium

25<= /o:p>

Medium

25<= /o:p>

Medium

30<= /o:p>

High

20<= /o:p>

Medium

17<= /o:p>

Low=

25<= /o:p>

Medium

Positive Relations

22<= /o:p>

Medium

24<= /o:p>

Medium

21<= /o:p>

Medium

19<= /o:p>

Medium

20<= /o:p>

Medium

17<= /o:p>

Low=

25<= /o:p>

Medium

20<= /o:p>

Medium

24<= /o:p>

Medium

20<= /o:p>

Medium

Personal Growth

32<= /o:p>

High

35<= /o:p>

High

31<= /o:p>

Medium

29<= /o:p>

Medium

29<= /o:p>

Medium

34<= /o:p>

High

31<= /o:p>

Medium

24<= /o:p>

Medium

29<= /o:p>

Medium

31<= /o:p>

Medium

Autonomy=

24<= /o:p>

Medium

34<= /o:p>

Medium

24<= /o:p>

Medium

39<= /o:p>

High

33<= /o:p>

Medium

26<= /o:p>

Medium

36<= /o:p>

High

24<= /o:p>

Medium

24<= /o:p>

Medium

24<= /o:p>

Medium

Purpose in Life

24<= /o:p>

Medium

31<= /o:p>

High

29<= /o:p>

High

31<= /o:p>

High

27<= /o:p>

High

31<= /o:p>

High

30<= /o:p>

High

25<= /o:p>

Medium

25<= /o:p>

Medium

27<= /o:p>

High

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

=  

Psychological well-being grade Post-intervention

Player 1

Player 2

Player 3

Player 4

Player 5

Player 6

Player 7

Player 8

Player 9

Player 10

Range

145

180

160

167

163

163

182

136

144

151

Level

= High

Elevated=

= High

= High

= High

= High

Elevated=

Moderate=

= High

= High

 

Table 3: Descriptive <= span class=3DSpellE>Comparisson

Statistic=

Pretest

Post Test=

Mean

153.90

159.10

Standard Error

6.82

4.81

95% CI Lower Limit

138.47

148.22

95% CI Upper Limit

169.33

169.98

5% Trimmed Mean

153.90

159.10

Median

153.00

161.50

Variance

464.99

231.21

Standard Deviation

21.56

15.21

Minimum

115.00

136.00

Maximum

195.00

182.00

Range

80.00

46.00

Interquartile Range

22.00

19.50

Skewness

0.15

0.09

Kurtosis

0.06

-1.04


The analysis of the results reveals= a significant improvement in the players' psychological well-being, evidenced= by several key statistical indicators. Initially, there is an observed increas= e in the mean scores, rising from 153.90 in the pretest to 159.10 in the posttes= t, reflecting a generalized improvement among the participants. This progress = is accompanied by a notable reduction in the variability of the scores, with decreases in both variance and standard deviation, suggesting greater consi= stency in the players' performance.

Additionally, the confidence interv= al for the mean narrowed in the posttest, indicating increased precision in estima= ting the population mean. Furthermore, the range of scores experienced a reducti= on, implying less extreme variability. Finally, adjustments in the skewness and kurtosis values point to changes in the distribution of the scores following the intervention.

These findings collectively indicat= e an improvement in the players' psychological well-being, highlighting greater consistency in their scores in the posttest compared to the pretest.

Shapiro-Wilk Test

The evaluation of the normality of = the scores using the Shapiro-Wilk test revealed that the data do not significan= tly deviate from a normal distribution for both the pretest and posttest. Specifically, the pretest yielded a W statistic of 0.972 and a p-value of 0.911, while the posttest showed a W statistic of 0.953 and a p-value of 0.= 710. These p-values, above the established threshold of 0.05, do not provide suf= ficient evidence to reject the null hypothesis of normality in the score distributi= ons for both measurements.

Consequently, it is concluded that = the pretest and posttest scores follow a normal distribution, meeting the requirements for implementing parametric statistical analyses that assume t= his normality condition in the data. This characteristic of the score distribut= ion reinforces the validity of the selected statistical methods for the subsequ= ent analysis of the intervention effects.

Student's T-Test a= nd Pearson

Applying the paired sample Student'= s T-test revealed a T statistic of -1.088 and a p-value of 0.305 when comparing the = mean psychological well-being scores of the players before and after the intervention. This p-value, exceeding the conventional threshold of 0.05, d= oes not provide a statistical basis to reject the null hypothesis, indicating t= he absence of significant differences in the mean psychological well-being sco= res between the pretest and posttest.

The Pearson correlation applied to = the pretest and posttest scores revealed a coefficient of 0.713 and a p-value of 0.021. This coefficient indicates a moderate to high positive correlation between = the measurements, suggesting that players with high scores in the pretest tende= d to maintain high scores in the posttest, and those with low scores followed a similar pattern. The statistical significance of this correlation, highligh= ted by a p-value below the established threshold of 0.05, reinforces the interpretation that the relationship between the scores in both phases of t= he study is substantial and not attributable to chance.

Anova<= i> and Linear Regression

The analy= sis of variance (ANOVA) applied to the scores obtained in the pretest and posttest yielded the following results: the source of variation due to the condition (pretest versus posttest) showed a sum of squares of 135.2 with 1 degree of freedom and an F-statistic of 0.388, resulting in a p-value of 0.541. Additionally, the residual variability, which encapsulates the variation wi= thin groups, recorded a sum of squares of 6265.8 with 18 degrees of freedom.

On the other hand, the linear regre= ssion analysis conducted to explore the relationship between the pretest scores, = used as the independent variable, and the posttest scores, considered as the dependent variable, provided interesting results. A coefficient for the intercept of 81.685 was determined, with a significant p-value of 0.017, indicating the statistical importance of the intercept. Additionally, the analysis yielded a coefficient of 0.503 for the pretest scores, with a p-va= lue of 0.021, suggesting that a one-unit increase in the pretest scores is associated with an average increase of 0.503 points in the posttest scores, thereby demonstrating a statistically significant relationship. Figure 1 sh= ows the results.

From the model's statistics perspec= tive, the coefficient of determination R-squared reached a value of 0.509, indica= ting that approximately 50.9% of the variability observed in the posttest scores= can be explained by the variations in the pretest scores. The adjusted R-square= d, which adjusts based on the number of observations and the complexity of the model, was 0.447, providing a more accurate measure of the model's goodness= of fit. Finally, the model's F-statistic was 8.289, with a p-value of 0.0205, suggesting the overall statistical significance of the regression model. Th= ese results underscore the statistical validity of the model employed to assess= the relationship between the pre- and post-intervention scores.

 

Figure 1. Relationship Between Pretest= and Posttest Scores of the Players

The linear regression graph between the pretest and posttest scores shows a positive relationship, indicating that an increase in pretest scores is associated with an increase in posttest scores. The model revealed a significant intercept and a coefficient for the pretest scores, both statistically significant, suggesting that the intervention has an observab= le impact on the players' psychological well-being. The pretest scores explain approximately 50.9% of the variability in the posttest scores, with the mod= el being globally significant. This underscores the effectiveness of the intervention and the linear relationship between the scores before and afte= r it

Discussion

The resul= ts of the Student's T-Test suggest that the implemented interventions did not pro= duce statistically significant changes in the measured psychological well-being.= It is crucial to consider that sample size, score dispersion, and the study's statistical power could influence the ability to detect relevant variations= .

The interpretation of these results= focuses mainly on the F-statistic and the p-value obtained from the ANOVA test. An F-statistic of 0.388 indicates the relationship between the variation due to the intervention (between-group variation) and the natural variation or err= or (within-group variation). Additionally, a p-value of 0.541 suggests no statistically significant differences in the mean psychological well-being scores between the pretest and the posttest. According to the ANOVA analysi= s, this result implies that the observed changes in psychological well-being scores are not statistically attributable to the intervention.

The correlation and linear regression analyses a= lso revealed a positive and consistent relationship in the well-being scores ov= er time. This indicates that, although the intervention did not generate an immediate significant change in the scores, the psychological well-being le= vels of the players remained stable. It is important to recognize that intervent= ions for psychological well-being may require a longer period to show significant changes and that their effects might be more subtle or manifest in the long term, which might not be fully captured in a short-duration quasi-experimen= tal study.

<= span lang=3DEN-GB style=3D'font-size:10.0pt;line-height:150%;mso-bidi-font-famil= y:"Times New Roman"'>Conclusion

Although = the hypothesis tests (T-test and ANOVA) suggest no significant change in the average level of psychological well-being between the pretest and the postt= est, the correlation and linear regression analyses indicate a positive and consistent relationship between the scores at the two time points. This can= be interpreted as indicating that while the interventions or the passage of ti= me did not have a statistically significant effect on the change in average psychological well-being scores, there is stability in the well-being score= s of individuals over time.

Therefore, although no significant improvements in overall psychological well-being were observed, the consist= ency of the scores suggests that the players' well-being levels remain stable ov= er time. Future research could explore other factors or interventions that mig= ht significantly influence the players' psychological well-being.

To be understood, one must know the population being worked with, especially adolescents who have immaturity in their cognitive aspects and are bombarded by information from an increasing= ly changing environment. This generates uncertainties for parents, guardians, = or coaches, which psychologists must address to make the adolescent process manageable. Ignoring the processes involved at these ages is a shortcoming; thus, it is essential to consider normative and non-normative processes when working with adolescents.

In sports, many adolescents aim to = advance to elite player status, play for the national team, or even play abroad to = earn money, fame, and support their families, emphasizing the economic aspect. D= ue to the process carried out by the formative coach, all players place import= ance on school to ensure they graduate from high school, which is mandatory. This requirement helps shape a different player profile, making them capable of making better decisions in the face of conflicts or sports situations. Foot= ball has lacked this for many years, and many clubs have gradually changed their philosophy from having the best players to selecting those who best adapt b= oth sportingly and socially.

There will always be exceptions to this philosop= hy, as many players come from areas with difficulties in terms of violence, drugs, family issues, economic challenges, and housing problems, making it difficu= lt for them to succeed. Because of this, clubs are working on these aspects to professionalize players from an early formative age. Additionally, the federation establishes guidelines to ensure that we have better players and useful citizens and individuals for the country in the future.

<= span lang=3Des-419 style=3D'font-size:10.0pt;mso-bidi-font-family:"Times New Ro= man"; mso-ansi-language:#580A'>References

Buceta, J. M. (2015). Mi hijo es el mejor y ademas e= s mi hijo. Madrid: Dykinson.<= /w:sdtPr>

Buceta, J. M. (2015). Psicologìa Clìnica en el Deport= e de Competiciòn. Psicologìa Clinica en el deporte de competiciòn: Una perspectiva general. Madrid.

Buceta, J. M. (2020). Psicologìa del deporte de High rendimiento. Madrid: Dykinson.

Daniel Parne= ll, P. K. (2017). Sport and Health: Exploring the Current State of Play. Routledge.

David Peris-Delcampo, E. C. (2018). El perfil profesion= al del especialista en psicología del deporte en fútbol. Revista de Psicología Aplicada al Deporte y al Ejercicio Físico, 3(1), 1-12.

FIFA. (2021, AGOSTO 21). FIFA.COM. Retrieved from FIFA.COM: www.fifa.com/es/abo= ut-fifa/medical/news/fifa-presenta-campana-reachout-por-salud-mental

FIFA. (2023)= . fifa.com. Retrieved from fifa.com.

FIFPRO. (202= 1, JUNIO 1). FIFPRO. Retrieved from FIFPRO: www.fifpro.org/es/salud/salud-mental/fifpro-lanza-campana-global-sobre-sa= lud-mental

Garcìa-Noblejas, M. E. (2016). Evaluaciòn Conductual e intervenciòn psicologica en el deporte. In L. L. Alejo García-Naveira Vaamonde, Avances en psicología del deporte. Paidotribo.

Nansook Park, C. P. (2013). La Psicología Positiva: Investigación y aplicaciones. Terapia psicologica , 31(1).

Pineda-Espejel, H., Morquecho-Sánchez, R., & Gadea-Cavazos, E. (2018). Evidencias de validez test-criterio en el uso d= e la Escala Multidimensional de Perfeccionismo en el Deporte-2. Cuadernos de Psicología del Deporte,, 18(3), 119-140.

Rebeca Liberal, J. T. (2014). Impacto psicologico de las lesiones deportivas en relaciòn al bienestar psicologico y la ansiedad aociada al deporte de competiciòn. Revista de Psicología del deporte= , 23(2), 451-456.

S.J.H Biddle, T. G. (2015). Psychology of Physical Activitiy: Determinats Well Beingand Interventions. New York: Routledge.

Soto-Lagos, = R., Pozo-Gómez, L., & Romero-Ãlvarez, P. (n.d.). Towards a Critical Soc= ial Sport Psychology. Quaderns de Psicologia, 22(3), 1-19.

 <= /o:p>

------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml This value indicates the number of saves or revisio= ns. The application is responsible for updating this value after each revis= ion. ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/item0003.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/props004.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/item0005.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml DocumentLibraryFormD= ocumentLibraryFormDocumentLibraryForm ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/props006.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/item0007.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/props008.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQDD c3oZrAYAAKYbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvYyd2Gkd1 qtixG0jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1Epcyq8JFEGR+hd4Z2Z3vROvSdJG UEFzaL2zz/v9Me/MXr12P2bokAhJedL26pdrHiKJzwOahG3v9rB/ac1DUuEkwIwnpO1NifSubbz/ 3lW8riISEwT0iVzHbS9SKl1fWpI+LGN5mackgXdjLmKs4FGES4HAR8A3ZkvLtdrqUoxp4qEEx8B2 CDQoIOjWeEx94m3k7HsMZCRK6gWfiYFmTjKaEjY4qGuEnMouE+gQs7YHkgJ+NCT3lYcYlgpetL2a +fOWNq4u4fWMiKkFtCW6vvnL6DKC4GDZyBThqBBa7zdaV7YK/gbA1Dyu1+t1e/WCnwFg3wdLrS5l no3+Wr2T8yyB7M953t1as9Zw8SX+K3M6tzqdTrOV6WKZGpD92ZjDr9VWG5vLDt6ALL45h290Nrvd VQdvQBa/OofvX2mtNly8AUWMJgdzaB3Qfj/jXkDGnG1XwtcAvlbL4DMUZEORXVrEmCdqUa7F+B4X fQBoIMOKJkhNUzLGPuRxF8cjQbEWgNcJLr2xS76cW9KykPQFTVXb+zDFUBMzfq+ef//q+VN0/ODZ 8YOfjh8+PH7wo2XkUG3jJCxTvfz2sz8ff4z+ePrNy0dfVONlGf/rD5/88vPn1UAon5k6L7588tuz Jy+++vT37x5VwDcFHpXhQxoTiW6SI7TPYzDMeMXVnIzE+SiGEaZlis0klDjBWkoF/56KHPTNKWZZ dBw9OsT14B0B7aMKeH1yz1F4EImJohWSd6LYAe5yzjpcVHphR8squXk4ScJq4WJSxu1jfFglu4sT J769SQp9M09Lx/BuRBw19xhOFA5JQhTS7/gBIRXW3aXU8esu9QWXfKzQXYo6mFa6ZEhHTjbNiLZp DHGZVtkM8XZ8s3sHdTirsnqLHLpIqArMKpQfEua48TqeKBxXsRzimJUdfgOrqErJwVT4ZVxPKoh0 SBhHvYBIWUVzS4C9paDvYOhYlWHfZdPYRQpFD6p43sCcl5Fb/KAb4Titwg5oEpWxH8gDSFGM9riq gu9yt0L0M8QBJwvDfYcSJ9ynd4PbNHRUmiWIfjMRFbG8TriTv4MpG2NiWg00dadXxzT5u8bNKHRu K+HiGje0yhdfP67Q+21t2Zuwe1XVzPaJRr0Id7I9d7kI6NvfnbfwJNkjUBDzW9S75vyuOXv/+ea8 qJ4vviXPujA0aD2L2EHbjN3xwql7TBkbqCkjN6QZvCXsPUEfFjWdOXOS4hSWRvBTVzIIcHChwIYG Ca4+oioaRDiFob3uaSahzFiHEqVcwmHRLFfy1ngY/JU9ajb1IcR2DonVLg/s8opezs8aBRujVWgO tLmgFc3grMJWrmRMwbbXEVbXSp1ZWt2oZpqiI60wWbvYHMrB5YVpsFh4E4YaBKMQeHkVTv1aNBx2 MCOB9ruNUR4WE4WLDJGMMNwpmOuAprZ7PkZ1E6Q8V+YM0XbYZNAHx1O8VpLW0mzfQNpZglQW11gg Lo/em0Qpz+BZlIDbyXJkSbk4WYKO2l6rudz0kI/TtjeGczL8jFOIutRzJGYhXDf5Sti0P7WYTZXP otnKDXOLoA5XH9bvcwY7fSAVUm1hGdnUMK+yFGCJlmT1X26CWy/KgIpudDYtVtYgGf41LcCPbmjJ eEx8VQ52aUX7zj5mrZRPFBGDKDhCIzYR+xjCr1MV7AmohOsO0xH0A9zNaW+bV25zzoqufCNmcHYd szTCWbvVJZpXsoWbhlToYJ5K6oFtlbob485viin5CzKlnMb/M1P0fgK3DyuBjoAPl8MCI10pbY8L FXHoQmlE/b6AwcH0DsgWuN+F15BUcEVt/hfkUP9va87yMGUNh0i1T0MkKOxHKhKE7EFbMtl3CrN6 tndZlixjZDKqpK5MrdojckjYUPfAVb23eyiCVDfdJGsDBncy/9znrIJGoR5yyvXmdLJi77U18E9P PraYwSi3D5uBJvd/oWIxHsx2VUtvyPO9t2yIfjEbsxp5VYCw0lbQysr+NVU451ZrO9acxcvNXDmI 4rzFsFgMRCncISH9D+x/VPjMfu3QG+qQ70NvRfDxQjODtIGsvmQHD6QbpF0cweBkF20yaVbWtdno pL2Wb9YXPOkWck84W2t2lnif09nFcOaKc2rxIp2dedjxtV1b6GqI7MkShaVxfpAxgTEfyspfsvjo HgR6C74ZTJiSJpngO5XAMEMPTB1A8VuJhnTjLwAAAP//AwBQSwMEFAAGAAgAAAAhAA3RkJ+2AAAA GwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHOEj00KwjAUhPeC dwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFoqhoIOumVcZrBbbjs jkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W5CKjpkHIu9BI93V9 oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwEylu6usTfAAAA//8D AFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9U eXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAAAAAAAAAAMAEAAF9y ZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAAAAAAAAAAGQIAAHRo ZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEAw3N6GawGAACmGwAAFgAA AAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQAN0ZCf tgAAABsBAAAnAAAAAAAAAAAAAAAAALYJAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIu eG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAsQoAAAAA ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABYAAAAWCAMAAAGEbayfAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAGGUExURQAAANTUKq7ZPMfggqzSRqzSR6zSSJnHG5nHHff77q3TSrLdPqbMOOXxxuXx x6PMM6PMNNLmm6TNM6TNNKTNNdPnnaK5LqXON6XOOJvHH8LeeKfQOcvijPr89afNOarTOujyyujy y57KJ7rZZcPdeJm7M6jPPajPPrzbbMXffcbggMbgga3XPKvVOqDKKqDKK8fhg6DKLP7+/bTWV6HL Lv///v///6LML77bbu3117HaP7/ccKXNOKzRRqzRR6XOOK3SSKTJOdzss5rHHJrHHabNOKnUON3t tPn88fn886TLOObxx6/ZPK3ZN6TMNOfyyqrUOp3KJqXNNqXNN6XMOKXNObnZZOjzzabOOKbOOabO OtXoorLaPqfPOqfPO6zWO6zWPMPeeKXNN6XNOKjQOvL44sTfe///AMTffcTffqTNOJ7JJ6XOOOny zLHdP5/KKJ/KKbDaPJ/KKrDaPf3++7XhPurzz6DLKqDLLP7//qnPP+z11arQQtnqqafPOavRQ6vR RdrrrbA+ZP4AAAB/dFJOUwAG/f//////////TVH///////////8L/////////0P///////8P//// ////7eL///////////////9M/+f//+D/Pv///+MS////cf/M////0f///+D/////////Tf////// 4eH///8B///i/+L/TP///////////////////3fV68j7AAAACXBIWXMAABcRAAAXEQHKJvM/AAAB nElEQVQoUzVRaXMSQRRs0PXEcwhBo2wwQRIO8RyiQSKRYIJoCLoxvZGIuoq3jrjeov5z31DSH6a6 el7P6+oBloA39QfAZBJwAeUEoNMEjl4gI3BVnX8JZAIOASR4EKh8Igeg/rxwV8505yyi1Wq2C7QY ygyKd0h6vRrQMMnH5Rf5zTjbIJWup9k59IeIeUrffJb/dWxLDCkj4+RUoW/N71yuJCxB7dE9kU1R aGSw56Wd8SpAmzuXZvL5M75pIKCTm975fuU3n8r7Ti79lUfWFMe8dLXjIqSza/3krD7uxdDs+tmf jvORUaBfmLJP0qTssmFIBq2MpYLMsBUG9jIIW8P/Yj9VMEE1uzUySVxTSNnAzWg3Gd+ev1wuCco+ 2Y1KebHQo7qhz+89rL/pi/tvXS/7XhiDK0bl6Fw9vb6h1Ps5fUpKdiXuWJbQ9F8v6gOKxCuJMJLf 3t5X+vBlQi+cY/AEjbah2r36/MTyaa31j0XVoWk3pKTKQJZO+nEliEtZg0pklLxW7BnP7hDN9Iry L2Mkrt2XSO7Kw1HjwD/s6W4e+ETjBwAAAABJRU5ErkJggk== ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAFQAAAAuCAYAAAC20j5mAAAAAXNSR0IArs4c6QAAAHhlWElmTU0A KgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAA AAAAAADcAAAAAQAAANwAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAAFSgAwAEAAAAAQAAAC4A AAAAfx3uaAAAAAlwSFlzAAAh1QAAIdUBBJy0nQAABq1JREFUaAXtmm9sFEUUwN/s32uhhaPQFpQU NDZI+FP+VVtC0iIx+KlKkABBEmP8YNQY/AJGIqiJiUZR41dNFA2QCBj4QkIQ0EorFAoRwaQECUih tNqjLfR29253fG+3V27vCtxt7/bQ7DTbvZud997M797Mvje7AEEJCAQEAgIBgYBAQCAgEBDIgADL oE3BmmzlIFSdaSiVTLOIOhEXxejlmqP9WxlYBevUfQw/cEB3ti+ewkRrGXDWiH2fzTmv5ADFNA7s 7CBjrAs4PweC+CM3+aE1849du88Yfb38wADddaa2Gpj0BnZopSizcuqYaXKwyBeRqF2wUhAARJHZ VXGD9+CH3cCEz1bX/NIx1Kqgp4IDPXKkQeouM95EMJskhYVjOkFMELw3G0FgIKsM4jEeQfAfVs5V PmlkR+P3lsrv1YIC3XFywURBVr+UFdaUDchUJAmwhsb3c1N/ae3CU3+ntvHre8GAbj9WX66M4T8o qlivRU17vKZloKNaIAkqfs++a6EiEQzdajFuw3PrF7d0+wUx2Q6uSP6XI5caQnIx/1ZWhWGYBHJ6 2TMwq/JFEG2gmU375N7TD6OorJ50k43ka359LgjQzoi+RS0SntajTvTDuQVFUhnUVb0D8x56HSrG LgDyVi9FQ52ku/MffYsX+dHK+A501+n6RbLENujanVASQyHQ431woWcvXOs7BpFoBwhM9jw20o3r 8obv0JZnJR4FJY9ynsUsbm1WJVHVteQpTWGQCW1/fWTrFZgEjIlYh3/cWV/dBnGBwHoGAi4PBN69 3qLDA0YMqhW33saLz7pl8/vN3ZP82oIdp56YI4hCG+eg4OEqGMDDwqkboESdCq2X34fB2A2YNGYu zJ3yCuLCPwTsBKQYJllR6Ncuw/X+X6Fr4CTCjaFHu30DnZ44G9y0Fq1dcPw3l7E8fnH3Io+GSDUX xBV401BonUsvHCaOmQMTimeAyFT0TAtCUhgqSxbheqqDFu9FERstSGIxTCmthxnlaxBom+3Z/dol hKoMq6UfTA0JijbIV2Dl/w8oDpDtbIenzJFm8BAG8jQ6EqkR3fmpXOzdD21XPsZwyrlx07k0VAXV k1ZBVXgZND76KRy68CrcNq67PNVCWwJjS9H2u+ixKXPCVp3zf77dlLafqJ0AAn+M0slsC3mrxQ37 MPGsm31wY6Admv/cCOe6voax6sMYHbyGat26yRbWVH9/vi6crU2v7X0DqkpCOY4uzDNMK9MH5CyK zqSnm5GCeb0MZ7u+gj6c7lPHN8C40CMI/U7mOWQrrGm8Il1ffmp8A2parASHoLh9aHSDort8zLwF 1/pbcWrLuP4+7gbqqFdEx/bojGUo7RvQDPvjqVk01mPLhaTxnuRzKeQbUFHgA9hxIx9xWpE8yWai m/0uNkO2DNOx7bqWry++AdXjVjdGPRGGW265KhQFKGIJhlB19lTvHfzDdZcfshUJhdiNXNm8nx7f gK6vPdHLOOugzeHRF8qU4nZ8OrPiBbwZTYerN3+Cm9GLLqBkC611PD+zNTJ6m5lp8A0oxYGYdh4W KOHJulD4Yw0flDWNC02DJ6s2w+zJL8MtvRNOd36RppVsWZwf9isGpQ74mikh0724X/kWDjAt9aTO UProbIo4Xmz7F9ZPCy+HsuJZmH46vz9Nc0pRqfTcOgPHr3wAA8ZVzLDuZEpoA2K6Zcgy22M39Omf r0App97ZXndACQlNybtNibFSPGn7ImZLFBIZ5m17GhNIVSq1m1FKGcP6S70H4Grfz9DZ12xP/WSY 1FBRUV6zDqyqaT2b0O/HORcLWlb9pC01WYRmfG6k0q5QcnE8knLExAWsGfLK5HbcXj+d/VIK8FN3 m0gEU049psOSdbUtbcmy+f7s2xqaGMi6eS1tZpxvw42LRNXw2Vknk5N99FeEl3qQAO3qOzv76T6h ondi2rnNb5jUr/RRUW2ey+Sw+h7u1h8MFaWaJzipgBJ1qeeRO0k6cTk5SDZGbpHf2tQR5dfakPbG 6Uc1kUvrcI1rSYfqvQuky9B5C+kmG941eZcsCFDq7qr5zT2WaTTho999+AwINzpSPTPzQZEs6TAM vs+K602kO3Pp3LYsGFAaBj0/r7iprIxrfCPO9Ei2YBMgMUSKGFG+qaJXWVnIZ/I0Ju9uQdI5LN8c r61WQ9m9imPGeDdGUbuBxz9fXXMieBVnpN9jz/klk03TXIa77Uvx+ogvi3HGf0dPOMxNIXhZbCSI d6vb+h98nfFuYwnqAwIBgYBAQCAgEBAICAQEXAT+BVf2lXd/sCCNAAAAAElFTkSuQmCC ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAuMAAAJRCAIAAABgHS6NAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAA/7VJREFUeF7snQXcFUX3xwcx31cFQekSUbGwsbsRRSUUBEEQRbFARV8DkRBQ kBBQulQEkRDsQrExsAOlwUDF+ism/+9wcF3vUzd29+6eZ/bDh8997p2dmRMzc+bMb84ps379euMe xwHHAccBxwHHAccBx4FYcmCTWPbKdcpxwHHAccBxwHHAccBxwHLAWSpODxwHHAccBxwHHAccB+LL AWepxFc2rmeOA44DjgOOA44DjgPOUnE64DjgOOA44DjgOOA4EF8OOEslvrJxPXMccBxwHHAccBxw HHCWitMBxwHHAccBxwHHAceB+HLAWSrxlY3rmeOA44DjgOOA44DjgLNUnA44DjgOOA44DjgOOA7E lwPOUomvbFzPHAccBxwHHAccBxwHnKXidMBxwHHAccBxwHHAcSC+HHCWSnxl43rmOOA44DjgOOA4 4DjgLBWnA44DjgOOA44DjgOOA/HlgLNU4isb1zPHAccBxwHHAccBxwFnqTgdcBxwHHAccBxwHHAc iC8HnKUSX9m4njkOOA44DjgOOA44DjhLxemA44DjgOOA44DjgONAfDngLJX4ysb1zHHAccBxwHHA ccBxwFkqTgccBxwHHAccBxwHHAfiywFnqcRXNq5njgOOA44DjgOOA44DzlJxOuA44DjgOOA44Djg OBBfDjhLJb6ycT1zHHAccBxwHHAccBxwlorTAccBxwHHAccBxwHHgfhywFkq8ZWN65njgOOA44Dj gOOA44CzVJwOOA44DjgOOA44DjgOxJcDzlKJr2xczxwHHAccBxwHHAccB5yl4nTAccBxwHHAccBx wHEgvhxwlkp8ZeN65jjgOOA44DjgOOA44CwVpwOOA44DjgOOA44DjgPx5YCzVOIrG9czxwHHAccB xwHHAccBZ6k4HXAccBxwHHAccBxwHIgvB5ylEl/ZuJ45DjgOOA44DjgOOA44S8XpgOOA44DjgOOA 44DjQHw54CyV+MrG9cxxwHHAccBxwHHAccBZKk4HHAccBxwHHAccBxwH4ssBZ6nEVzauZ44DjgOO A44DjgOOA85ScTrgOOA44DjgOOA44DgQXw6otVQWLlw4bdq077//Pr68dz1zHHAccBxwHHAccBwo iQNqLZVnn312wIABX3/9dUkciPvva9as+eGHH+Ley2z798cff6xevfq3337LtoK4v/fTTz9BYNx7 mW3/1q9f/9VXX6Gi2VYQ9/d+//33lStX/t///V/cO5pt/3788Uf0k2GYbQVxfw/9VLAKFMVlBKdb Pz3C1VoqzKF//fVXmTJl4j6SSuofs+S6detKKpXU3xETfi/FE+Wvv/6q27GHKcaTVP0rqd9//vkn 4kOIJRVM6u+inwzDpBJQUr+ZPxUbmugn+1jF+qnfUtlkk03Kli1bkhon4Pcttthis802S0BHs+oi puRWW22FsLJ6OwEvbbrpphCYgI5m20X0kyfbt+P+Hpr5n//8ByHGvaPZ9k/0U8GOrigGbL755rr1 E/EpXiD0WyrZjtzYvVe5cuXy5cvHrlsBdQhrsmbNmoqnkm222QYCA+JW7Kphhauy4YldzwLqEOtc 7dq1EWJA9cWumm233Rb91LGpK5S5VatWrVSpUuz4HlCHMDRr1aq19dZbB1RffKtRu5eNL8sz7BkH yT///HOGLyWmOCd0a9eu1X36A4GJkUeGHeXUAP3UjaP65ptvFHvXOVlGPxmGGUo+McVRTlQ0Md3N sKMI7ttvv1Wsn86nkqFG5K/4d999p9hSYakD76bYUvnll18UA/oYFkyUqGj+xke4LaOZ4IURYrjN 5K920U/Flgp2mGKgGDgVxKdYP0u7pYKAmYMS8SAq5pFEdDWLTnK3ghOELF7MyyvZTeiKQQAop3rq dBOoXoLqCUQ/1auoFaJW1PfgwYOnbHjq1q3r37EIWBpDG49ZIgRMPzlFBjOlUlIQhf8ZnEr8QbV0 FfBahQoVQC2krzl4ntnS1ahRI3/b5hBbhidffvkl3ABNFWIz+asaS/rzzz9H6FqhAEyGPCCNtKKG v/jiC+bPHXbYIX9KFGLL6vXT413pslTYiKO4LB7//e9/wcqFqEHBVc1ikP66GFyzEdUk5lciCKSr WI04WgE4szCnaVrhhuFFxYhFTH8kqJVACXaArBOholkMWqefWTAtPq+gnwxA9DPN6Sg+Pc+0J6XL UmH3QJyc7Tc8SRGtTJSZyjVB5RlpSVnn6CqWLj6SHXfcMc27x8QaQeuqVauWIImk31UmSmAcrOKK 96w4jbbbbjv2NumzJUElBRCN5a3Vp0LkN+ZPJvwECSX9rsreW7F+eqzQvAQWlDe+MhZFvPcJWvvp s2LAKUsdBGaH/0h/PAdVEuXhVif/0+c06yT8ruKrMTBBd2QtNBPxKY6hDGkYKypPlmWEop+KbySg n4hPsX6WUksFshU7ctNcO12xXDiA/wAVSn9mp3xSPEbZsUW95xlng9ajHzl4dfqZnebH5C30M0Eb 76yZVrp8KlmzKY8vgjbV6piViXLLLbdUPNKIcKo48BQSrFixIoDTPA6QUJtm6HEykuZJX6g9Caly TrXQT8XGCvrJ4UhI3Mt7tegn4lOsn6XXp5J33XIdKFUcYA1ICnY7C7lgaDJXKg7mDYGIT/FCLvqp 2GmEcure6UGg4p2es1SymJbdK44DGXNAfS5lELW6cymvWrVKcYq70pBLmSjDGY/bhLwguegVA3Gc pRIXTVyxYsXdd9/db8PTv3//6dOnE78hfRhExGQsXbr0/fffDzZ4MxUOHTr0k08+SaHl008//fDD D5MOFpOofRGLKcrmJARflC1G3FaCEN9ZcKY06KdcpFf5sFIw+pJyIyEXETicSi7cC+DdhQsXjh49 +umnn37vvffefPPNUaNGXXbZZS+99FIAVQddBaFExo8ff8cdd2BLBVg3hN91110plgq7WAy4O++8 M+n7dbzrivMvoga6c9VyLIL4dJ/+qNdP3aeTuvXT+VQCXGpzqgqfAXioSy655J577pk4cWLHjh1Z sx988MGcKg3nZdakY445pnHjxsEi1NgQyOPvNTDbE0888ZRTTilXrlw41ERUK7FNq1evHlFjkTcj uZQVQ4ZZ5Eg1rDVALfpCyAYCKAuSg/RNb71lUhwQhGZ8/XXzww+R61ZADQKI1hrsBw4hOMSnNdiP XwWcTyWgARFENSzPDRs2rFevHsF8vPoAOrzzzjvz5s3D0ULYOm9Fl9x+r7/++jO+h9MZnNUffPAB 5yZkDHjllVdeffVVOcXEJFq8ePHzGx6MIf+pChnmqOfZZ5/lIIbY9tI0B9hvv/027b711luSjJSd JRHMyE7gQc1xq3J6Rcd494033uA82Du3WrZsGa8TJI22aHHBggUZ5bGjLUYgAdZkw4cXhx5CESTM nz8fuqDdf0aGv+ejjz6iGy+++CJMiM95hPp4Krpz1aLh6HDSjyCLmZw4yWVglinz14oVpmNH07ix GTPGbAgcvfEZNMg0aWK6dSMVZRBzXOR1MHcxhUbebEQNshwgPsX66fGxdMWoZSkl9SubJGwCywL2 8WwiPv0UF3bwmkVwsAYNTP36xdeM+2TQoEFXXXXVmWeeydLLctulS5c6depw9sGL9HbcuHFPPPEE MyYPKzdOl4MOOoiFfNGiRSNGjMCIYV8roD/o4uTo5JNPvummm7Bp9t577zlz5nBLlhpq1ao1c+ZM QDBiTBAP/pxzzmnSpAk2B+9y/MTyD4Acs+D888/Ha8LCP3bs2Mcff5wxAK/OOOMMvufX//3vf8uX LyenEtsU5rinnnpq8uTJH3/8McYQjpZDDjmE7u222250iYMbuo3hhQVDV2moUaNGl19+ecFgkeRm 6tGjx+2333766af7edW5c2esLuA7XIK97777xowZc/TRR3NUhB3GTgKPC4yqWrUqr2DBUIDmJMYa faMbxx57bBhOe2Y9zCa8CGk6e5AgB1i77rpr8AoWgxrRJexCxI3GxqA7wXcBJf/ss89Qs2D9iMF3 NNsamRAw+nfZpe6KFZudf7559lnDlfMBA0zbtkQQsFbLpZeaX381Z51lRo+2PyXuWbJkCfMAE2Di ep5Oh5mf0U/8mlr102NC6fap4OjEIGjd2rRsGfw/qp01Kx1tYz3GmcGq/9BDD2F8MDnKms3yf++9 9+KQuPjii0FyDBw4EKMBmAhuDKyWhx9+GDPlyiuvHDlyJKYJ3o7TTjuN4xJe5FcqZIj27t37tttu w/+JIcLpEpbE8OHDqQpbB0sIWAwlX3jhhccee+zSSy/lGw6hsFf4EoPgySefbNasGbiZ66+/HstG vBT85HkyQNhgY+EYx8jA2sA4oD8YPUx8UhJILB6d5s2bY/RgplDhyy+/nA5DpAwtem1RG/YBXcVA wWRp3bo1FFGhlIRvM2bMwJyit/CH0xY+4NRJv63wSqrPdKqeQN2xIkV8TIQs5ZMnmxNOsL6Trl3N xIlm5Ehz1VXWTGnWzNx5ZyLNFMZ1adBPd0s5vAk8NjX/5z92CAKGCPwf4YY2nFyU+OAOAamKCwEn AWcc11xzDf4A3uL62aOPPrrPPvtgf7An2H333U844QTMCywAVm7OQTgnOvjgg3faaSdMEM5KsK+9 jT5/YsTgX+EnPBB4RzjLPPfcczm7wTFz0kkn4eTgRAZTAPcJ/+O3wCVDQ7h2cMNwBoRfEQOFeo44 4ggcMClHobwihgLGzfHHH7/ffvu1a9cOc4RzGYwkIZk6MV/OPvtsOtmqVSu8KZwHlciNogrg0aH/ tEJt5513HuYIhhGdx4+CN2WPPfbAvIMEPDr4hHD5Ykhl3VaALwLuAQoQYIVxqwrFUHxMzhpA/gTF kMy/9dNuWUlOhRMF9wmAlc6drb2Cj7JFCzNwoP0poQ/KyYSW0M6X2G30k72iYv30OFC6fSrgyPr2 NR99FNa/Tp1KVDUKsJJdccUVuCWwUfCacFzCAsz35NbiYAU/BDYHD3YMLha+xyLBn4nBgeeDRRrj Bv8KLgcWaa851uy99tpLAjrh5MDBgJOQQxapCscDedcwR6gH/wrLPIcsffv2BZUikBSsoj333BMv yy233ILHpWBAAg7vcftjP2EtSaNURT303CvMEQmnHgLWwznJiMolAw4LBgRKbcSdhGkcxEAC51zQ gl1yww03CHX4deiDB7hJRwThlcEi1JodDaahYEhWsedZfQxQVnH0s2zZjQtBzZqmXz9rl4Bt499e e5nBg627JbkPysmOK7n9L77nzLq4zDeCGbQSuYGu0m2psJBjbuP8COnfVlulozxoG4YFbokLLrjg uOOOe+CBB959911exHHCCQhejQP+fvB53HjjjRgE/Cp29KRJk8CO4DJp2rTpUUcd5TVHnV5kRgmZ wHDdf//9pSYAHxz34KFhpWH5v/nmmznoAfravXt37h9hAXAw361bt/bt27PkY6xwJgUWxE+L9I0m /PEfpUvekY3f75q7C92fXwbqPIenhBNguHrU4eMBrwOZ6TA/7DI4zDCkwm4lj/WjIboja7EHUBxZ i8GOfvojjjz3HGj6jQr11VfmmWf+BbDNo6Zl17RgE7N7N/5vybG47Gx1P6XbUomZbFnpwWFwzIFv g9WXoxzOOHbeeWcsGO/BeqhduzbLM74W7gwP2fAMGzbsoosuKuoyHt4Itk14ODiI8dfD0i4MoMK2 bdviVuGgB2gqCFC5fdqyZUscLbz13HPPcZnIzy0cJNTJIMGlId/TJeDAnPhEfCmXbkAg3h3Ohjzq OB7aZZdd4iBeQEiKI5zK6aHiiZJhyFqefursOKhcRn0Q/fR2F0OHmmuusYc+Z5xhwLxhqVx2mRk3 LsHGCsoZE/dqRnJJszD6ifgU66fHB2eppKkSERXDLgGHAYKEKzl4U/iMRQIulXMTZkzu3YAk5eRF egPClKs33B6aNWsWZzT8WmiwQrwpoFWwKkCessNAs7FFuM1LExwkYRVx3sSXkilQMsfSKAU4CeIY W/JKpIC2MKcOO+wwzpU4tAI3wwdgK3PnzuXIKbt7LmxboUsePqcfpVe8KVylhhDhEpTS/4wuRYcn Xcm9HF79ea+5NCAWFafFEf1EQ0HMA6G99lpu0lmoCp/BrHA/GcwKuFou/iQ00KvTz7xPEYF0QPMc GgiDwq5EjABvMcOq4FAGdyVBUnAVcDcYPArnLxxncMWXazhEsxV8CacbcvDBu9wGmjp1aq9evTAa Co5MCpx66qmciUybNg3cLpiYrl27AnmRAx2cIlze4TCIJgC+4JnAN0MHAKnwJeWxgehS/Q3Xrf2H OBw2Ab8FQos7B+8Lrh18M3RYUAsFj3uKWrNBclCYa0ScQMkDjIadEDR6K0Shi73wjWItWrQAd8wd KC5JQR1wH2ymmGykoE5x4CkEpD6Xsu5cteBUdtjB4lQ+/tgiZ4mmhJkyYoSpVMmiVbjyA7gfF8s9 91j/ShIfvLy6cSpML6UBp1K646nEYORxlxg06L777utFpMAZQAQzHCogV1iGwdXiMOAsmVWZgxVA KqgmfwJPocCFF16IewN7hQMa7ip36tSJZRvrAX8gkBc/fXhNgL/IvSFq4HCEFvGg8D2XaMDbUj+Y FR70nmWesCUgVzCGMJWwA+R+h3h3Dj/8cAn+RjFu+lCM5rgmTQQXzmLEvKAtbCB8OTJNYHngAcL2 AsCbwnWuOOEO8ecSokUcNlBB64ceeigEEpEFK4ovvXCoWHJ0Hp+TZCrGEwOXAA5DBedWUAGvwtgK ZxpPRdLiKJ5KEJwkHI7BYAq+C4ws/I64FcOIzRN8dzOvUfRzwxxS5vHHzbx55qKLzE47/VPR4sVm 2DAbEQ4UXNmymTeQ7zd06ye+ZwhMwQvmm+WhtO8slVDYGnalr732Gv4Vrv62adOGaRRDgfvMeDXw KKTETwu7J6Wt/kwtFexOjsa8G1LK2MVEiT8PSwVIuDLShByWAcxfThjTDPSXOCbgPeXBG6r1pitn 4liZEYPnIlMDzGj0M/1AlJF1LPCG3OlP4CyNokJJtsItIWCwRDkjvBtnH2BE8DpE0bxrI20OsJbr znRaMGdT2rxJRkEITB81lQyS/t1Lp59JlJrXZ93i88h0lkoitZQtAuFDiMoqiXU4hQFfQkh+QAOJ pEd1p3UjaguirZUJU7f4EJZuAp1+6hiP7vRHhxwdFRFxINPTHwk8I3kWVT6SHU0rTkVwAKUBpxIG qCsOCl8acCqK9dP5VOIwiFwf9HNALBXFdAokUyuBWCqAwBQ72CHNH/ZNnxwlt6s+uoQi9frpLBWt quvoihcH8MF4wfHi1bMgesNEyTU0wvMEUVkc68BMQXwIMY6dC6JPxEyCQMW2JncnJWeqygfBERZL cWxJZ6mo1FtHVOw4oD7wlNZTA0+TdEtQN3Wxmw5C6FApkWCkiFq8cGy/SKj71FNPEUIDa7eg4LjV yRVcoo1RhpAehcYJJigIvxIDjXzCIYjeVek4EBgHOEJWnMoVNhEqRoLrqHxYBogkpPUGLyIT/VRs bqKciqMZgRdGfP7kayqHIURFh6jFUcyV2rFjx0pgMcY/f5Jyz89ZosgTvgx3FtzHrCGqepMmTQhx RsQwr9jw4cMJn0olVMhzySWXtGvXrmBcpsGDBxPonadu3breu5KtitgPydJdrDcu+BDzgLgOcVZE DgJI/kw0/Zj3MxceZoGoBQqgeKmTgwOtcyUzDAT6M2LmojwxfJdpFv2UHBox7F7uXSoN+imhunPn VTE1APUJuYUSul+2R48eoVLoVc6QIL8M/5PIl/+JzXrSSSdJjHZ5SNdC/l6WZMK6k2GOQKg4VAgA T3jTI488Uq7SYXkQM544p9zIPfbYYzlhJSo8uXIK5pohwilRTQnN7k9JL9nUCOIUq4mVmQL7iRCu M2fOfOKJJ+ASJhrdxpyS6QMvFAH1CQKbXUqdaORLK3i5iGRPlDNCxPobRY640Ej7zP88JOUhWhG3 RRBE2AMscNq56oKxgp2dprGLKDE0t9lmm8B7EocKWchRXdl4xKE/gfeBdQ43MFqq9XKT6Cc7Q613 ldmdMma1+jXlmIKNUKh7ofnzbR4o1mqmMc+g5UTkttvsgKtT558vAx+AXoXRnf4wEjBBsDxuvvlm TA1/VhfpzfPPP//SSy9ho+AmwUw5+eST8YtghbCEC6KNEUVGGBZsAp2RxYa0w1gtYr6ACwuPR2HX jCfpyiuvhDSJQP/666/feuut1113nZe+mOkyEbGnBGZfEGmPdfj4448jJk7rcJhhjPIZZRg9erSX bbEYJjPXoBi8GLYgwqifWTLRylkiT0DzsdqVWCyhBdhFkD5CbmKrfLjEi34qvtykXj8RX6j6ic/0 1ltN//7m6qvxJmzMqo2Z8r//md697U/ffhvFyIjUUvHsvkKh5hLNM+XMW3Yz4gJhIUcquFKI0Cq8 IUFM8+bNcZ/ghyiUW7lvFBYuNOPHk7bmX9UjMJKLLlkSgITIejNs2DBCkpPn78477yTg7NChQ8nd Q4Ydws7quHQgV+kIqksqRKyTESNGYK3iHxo/fvzDDz9c4iyJS+nGG2/EGRMAuyOvQqtTPXJG5rNB J8R8ct+1XRIHQtVPnCgnnWSAok2darNqc8+P1bBbNzNhAlGUzJFH2v8jeKI7/fETQzo90vIBUvEf Z5A2D1vkxRdf5AMPe2jy6/INS/j++++PMPgJvwv5exs0aCC18SU7+AkTJhBFnix6/ibk9Ac7xp9I M9PTH/KLduxoxo41v/9ujj6aYI62BUmDjo25YoX9Mhe3NxYbTibyEeJTOe200wTahiMdtuDTw5FA gPxatWphx0A4yZMpgAWDTwKqvaMTKiGBH44ZDtSwBbfeemuxz7AA8GHgoQE7IgcQEn8Mo4GaYQVm H7Xh1aAGivGrhwfCQoLbfM8hFHYG2Oc333yTRIZ8oA9+Vz+WFgjojz76iMKc3yHZY445Zvfdd/fL gn0bdgYlscDoHp3EMbbnnntSJzJq2LAhrfA6/iSMElrhAyQIIaCqn3zySUrSPephh0QSRAovXbqU lIT8SqMcxNClUIerR06mpz+Y2vQ8zaOiCAZ8sE3Ac3YRqITWwxEIRHwQmLhjyjQFDV1sDnmiGT5p 9irAYur1k6GH+MLTTxaTAw4w5JnlDOjNN/EXmBkzzIMPAqU3N99srrnGGjERPDGyVFiZgK2wQIK6 BbGB/cE6evnll3fs2FFGEcdAQBzIwOe3b9auXXvPPfccddRRBx54oJ9fLL1UhecWk2j+/PmszTLp eGs8q51k9BBzR5BlfBYM3YbPAM02eeut9QsWrH/hBduBY44hZ+9fXbuaiRMpZs4+e/0xx/yxySaE TvqLNVViKEmd/Ekl8qdYVFInj1+lpPOYDlgqfigD/eRLYB+YKSRMxlJhpadOzlCmTp0KlgU7rGrV qriUqJYvccNALBYDKzo8ZC1nUef+FE4aTAe+xBgCT8BP6DQGClzFJqDO6dOnY3xQHhwM3cbaE/cV dk/37t3J54zNgenAMRzODywDDCaMEpIwE7af8riyOInjKIf6YTimEvnAOJgr3lIRhmBBYo2RWBEC OeNDsmRYJEMyHYNw5EXGADqAmTJr1qwvvvgCi4qEz7xI5ZB21113oQ90AG5gikGaH5AU+MhBcOII BJOBtYRkxWQRrCW8hascgsA9fuJPfqIAk4gYx/wpuEVMRnRSSlKhlETWSJzvoVFK8iK6ISVpgjr5 k58QKz/xJX/SDURQsE4Oy/iJkphHfJCSdIYmqJ+H18WWldalTjpJSX6iV5iSFPNapyQRKaiEh5L0 lhelTo9A/hTFlp+oh+bglXRb6qRCHv5EiPzpZ5rHCikJM+kA9dBPCvtL0rrUKRRREpZS0s9eaElh L6wQ9hbKNE9kfvZCgtRJbbzF/5IKFPbyE38ylIS9/Mn3KUwTBI+wl58oTz89NRASeKifkiIy/oQi 6EphWkGRwVjhvNRJ/3lRFEZCa1BtoUwryF6kRg28RZ30k956wpW5wtM0Sor2Ciu8fkI7JfmeX4Vp lOQt/4jwmObXtJSSMul5JflT9NzTSeqnTmGa6KR/RAgrZEQI53noJ/rDWyJBWodMj2n86Y0IWWKk 2ymjTNgrJcXJ7REoTEsRmWgv3Zb7wyIIERn/i6x5BZ2kNiHQzwrpp5+9np7LMSuDQirhoXU5oOQn acKbHGSaFWJl5HqjTAjkS6EIpsl4FKZ5A1lGGT9xuWWnnb6rUOHHDz4wCxduum7dtzvu+GP79v/X pcumJOH++ut/phGBPcmQ97NXJhw/e2ldRq6wV4RbjMUc3elPiYsH/GLbDRPZlJPFBncI2ExMFlZN eReSKJNiPCIMsRJS6ud7uMyWncVMHjbf3nmeGA0eosJvZFCP/Ak4ZLvtzODBf3XsaFEinMn16WMP 5zgMwjfRt+/6m25av/nmnGvYXvGWnF6JpSKfPcPF+ymln8gVncOBVDBfDzYKYqPPMITKkSK2CJbE uHHj+vfvjx5wjAK7GK4zZszAauFIBXvlhBNOgBs0h3WCeQGyFWOFn84//3xW90ceeUQgL3QMrnIH asyYMaRfxkcFq6kfTaItymAEYEnQHNd5uGlFH/r06cNpFKcwODMwIukPDx9w25DVefLkySQhwvLI 6MSURukMNEqvjjvuOOweORtCcefOnUu7VIupysnR2WefzU/c82IAoANNmzaFNOyVLl264Fnh1nqJ CpZjAb/CyOk+D3MrPZdlRtYMaOFPfmLG4SfmAuDDMv3xp7iykLsYx/6S8pOUpKvyJ3VKjFQpKVMV 30hzBeukdfmJknLoJpVIZ5jLUuosWNKrU+oRC1s+8wgTpBJq4080RGJPeayQhUFsO3mLkkI7n4Vp UCFMk6nKY4WU5H8pKdYhtAjt1Cm0e+yltx4rPKZ5rXvs5ScRmcc0qZMCsqPwOiPslZIoM58xvlFs 6adHkVg8Xkk/gcI0TytSBCHs5Uvptsxpfv3xhOuxQn711EBE5mcFJYV24QzdliY8pnk66e+n0E4Z 9NNbM2jFr5OCsuIbv06msEJUy2Mvr9A3ITBFuJ72euz1tEJUK0V7ZTPgHzvCNGGFNJHCCqHdYwUV shNjnpR1HW57+iNME00TkflHGZ9FtWjdY683PD32FqzTG+PST0+xUxRGWCHsFU3ztKIo9ko/hb2e utI3PNBitAkrhGk8fk0rvk4p6bFCBrKfvVS2fv1PJ5744267AdhaX736L3vv/VOjRhjWv69bZ6/o ipIUyl5vwuFXTyep3xOuXxAF1/F/Jm1ZViN+2MGzL589e7a/XZZSvgQkK+OcB0gpRwONGjWCWv5k pdxll13YYfvfYi+OM4afUkjg5Ih32eX7v8cs4OhEhlb6z3ffre/SBdcL5oj999//rh84kEkq/QqK LElgGIDDrLUFS2ABgMjBCEDnsBtwGuFykJ7DH+AsgI7xprBIsHiDQYZSjy6UYODAgcCWeZFJlgdv BNegMEqwRbCdsQmwBbE5pF1UE5Nl3333xWXCn8xcmAU0TT0YN5w6ccFK6mFUcI2cq1i4eTiYo4m+ fftKuygilSAgMjynkMM8iNOIDuMa8f+EU2ePPfZAdjI2ZN5k1HGY1b59+w4dOojcUQxO9zDR/O/S N6ql8Pvvv4+G9OzZMwB5pFEFXUKF2MSkUdYWgduUT7Nw4ooxs6BFrOWJ63maHWYaxYmIuZlm+cQV kynRm3IT1/8SO8zEyKxVYrGEFsDIiEY/GQHnn89ZwcZFkHWwZUtQAdGxLS4+FaY8FkWGDSuo5zXB pc+ZDhYxD7YVjgccBimhu1lW+dIfcKWYrTN8zWJjXa6cueAC44V0qVnTglc2OCBzffB6cejD+l2w ItZC1m+ww3K/DlchZpzAHeAPxyXQwosc3BByhtF46aWXEmmGkxreYt7B0MEowUXRecMj179l3yBt YVLgy5HP+Es5guFPzo8oQCVUeMQRR/AT7MUamDhxotSDUYX3Qux6fCHYKF6vkALnLxld/2bVpx7e giIWA5xDGBzcCaK3RUGkpcPs4zk1I5s0VGNRRR8AsDjb/9+yFA9wrooS4/d1UwfjC3XZxlggGXcN CaavzxnXnu8Xcr9UkW8KimtfjhSyW9fSp+vLLy00c+JEi0257jpzyy2G04YpU0yXLmblyo23gdKv LbuS+bFUZHZL0SHWUVZi70RG6BEZyP877bQTH8CdeKSyZM6ZM4fF0h+Xxc+IQEYgENohQ8wPP2xE 1HLlZ/BgjqKyY/i/3sIbhC2CSZFyBZdu40+CWKK9Ca9SFjx+gnuYBRyFnHrqqSzw3NkGjsOyjZNJ OIYFwE94R3hatWrFkQreF1qUHggCwOsNpg/uDewDtsgcDNEr/pRfaYIQOFLPOeecc/XVV+MSw0IS x7U8WfCC13GHcMYEGAV6MVM4zcFkAVnMiQ+EF1UnrhQOpADHcHpFSQw1z+TKohthv4IlSj/DbiVf 9aNCqIriQH8c0nMOqzUcDmrDHg/9zGiDkS9ly65d9JOz4+zejf9bCA799Gb1MDrM3vamm8y4cXb5 u/FGi4Lo3t1iaYFA3HuvhUNsgAyE/uTHUhGy/CscCyf4UBYhMJ4e1oG9Mmsnl1xYFymPOQKWFrgl SFupgdMNjgY4JfFuAwXOsO+/t5bjqFE2Qh/3fYDTgiJATj17csqYa2uQxhEVniT8SXJcJw9nKxyN sQBz8iLf4OXDhymnxZh02DFwDMwpfzKZUqxTp074GHCowBPWe5Z/fjr00EPP8j0UK+qOBndnOGDC dwWmFZ5zUkPrDAMWIX4CxOqvB6sITw9TALXxishLeigQhBIfzBRa4fSHW114d3Co0C7C7dq1K8YQ BhbIG68S2vLfncGh8tBDD2E84ePhMhHxA0PF0pZIS/EFEJZITesjYA6t1DFHMTBTtk+aiIU0Aa9o IspPC/qZEXguWXxAcDi2Bc4V0oNqYKxwwQdXCiFVJFLtZZfZsG+cNrDblSuxYT+R3v3BHQIGk00/ eAj27uykOWXA7GCJAj3K4sRZA5AIFj/WPC6t4AZgWQJdAUwBRrBwYqxwWwQ/CqOLekBjsJSyQvsX NmFZIDFqOZbBTJk0yV4ZxzThEvmhh1oT8vXXMZKspdKwoTUts37YkmIQcNDIBRZBg+NfAQUMWhZb BKDGIYccQuUYLkBSALWASIJR+DxAsOJJat26NUcwDz74oHingHfAWOAmvIXuYgfAJfhDzZzgYMGg 05gXfAmUhNexY7wIN/QEgwDecsGHyatNmzZkIeBLuoTng8s1cFhw7NzNQUzUw0+cE2FwyD0gALD4 RcCvYToUeveHtw4++GBahxxu9EAjDYGwQfpoAreH6CRXl/kMFZhuVAuIRy4LYJ5CEX2QSHGcQHFw hjII8JbyfMbSyloQ6b8oQLD0Y9RywsV5ZUHEdPotxrmkHEEiIGzuOPcz675hhDEXKb5nzikz4y6J 0aLTlKlcSkgTHpBmnfEphn7ij2cqDi8OgtxS3ntv0779P6FTMFD23dfstZdp2tRUqxZFjNpILRVs C65vsOyxGrHUsaqxLrKAsYdGk9gZs8qiBCzVXF0BV4FfC2AEyBVPM1irWAVB8GGIsMDzmfMOz/Hg V6BALBXgMXi9iHWD1+uGG2z12CXHHgtOwt4sJ/4cIXFyiadChTjucCrgVsEyw0rDpYRJATcuuOAC 4s2IC4TBBk/AsWKjgFplYcZhe/HFF3Nkw6rJos5RCP/zIit9y5YtcUHh8ORghfMg7BjcTpggGIUS nYVxy5ccr/gtFVqhLWwIugE2CBtIVJ8pjNgngGcxbrCWqAfR4MvhVhE9pxUMFwwUnBxMeVQIdBdv R0o0fYwMEDDcLaIG4sfQVToD1ZBAW3iAMJhY+7nnDFwaI4alnc5jfomlggmFxKECPxPWKmYr3nhI 409YQeWYUHQJ/kQwg2RqqbCKY19qtVRgOMYi//ujFkUghciawJhm84Byas3CiHLyCFYsMq5G2RD6 yfyg1ZL29DM8SwVhEUR/zz1ToZnoy667Ah6NwkyhD9FlKJRJjUXXD7nAZGGEsL/3n0rgU2EnKkcP hZ7AydUs6uGMQ6KZFXyCylD44Yfm00/NCSdYMJH3fPONee4561DZcMYSwAO9rPGYbjAEkvFnYMl5 OB7mSn4FpoNLQ8K7UQADAtaxqZWrPTgbsG9Y/lkUBYCCuY0VyBqPacLSDq944CrfY/FQjEvC/umJ qrBUsCMxg/y4H7rEvpkmuIcGtxEK8hKcLz9RPz/xmcM7litsGvqQ4uKiGGXwCQmnkDUmDjaTf/rA 4IA0OkznBZAE1RzqyQk6NOJkwkrAOKN7kIADCR2AV3yDnQch0SRFwjREh+l/mnMfkoUQiA1AS2JZ BbqByLRCVVA5xF2hQgWtUBWJg8JkohWqgviYSLXqJzOh6GeoUJU4TDyRWipREhyUpRJln11b8edA ppYKVhr7nlDzh+WXaXJGrnWdw2JmMYA6rVdIJOaTy6Wc30GUdevq9dPjTCRgmKzl4F7c4BpRDOiT UEWKAX2c/oAD0KrI4vpKJ81kQjmAHYb4EGJC+19it0U/Fc8wEle3RD4ktACCQ3z+2xjhEsK2hLuv nClE/jhLJXKWZ9gga7nihVxiOSgmUMJQZijzJBWXcJlJ6nEmfUU5JbJRJi8lqazop+IBKKFykySS TPqKfnpBnzN5L6uyXDDhUvLxx5t27SJKoOzrprNUspKZe8lxID0OZB1vJr3q81/KEZh/GeTQAye+ HJgXi1cjkiCpk7naMnCgWbzYcNOkQPqasHlR6iyVxO0eJAde2HqQx/ohMFlxTjNSITD5ii/+IDhg 1Fov/jAoUE5u0oV6sSKPQ4+mudMksb/z243wWkc50wS/h9eH8GpGP4HTFnWtJJh233/fRqjt0ME8 84yt8NRTbXgx7vxE+6hV0ELZyICUNGPRMjmn1hSj+eALS53kO82JRxG+LNnR0p/ZWeTiHJgud85x 40xrsAqYw+hjJVBsqYh+ar2ijAQxU7Te2xJLGkMzLEuFQ89p00yTJmbQIOtEKV/ehnsjqP7++0d0 Ndk3PZWuuz/Ax7hVK9vcoqK15j53B1sDB8moo9apJFnYde57c18aS4VoNGle5wFtCuaUe93BakVM akN8EnegYOjFmPQwx24w+rgMj1tFqzUm+inxC3LkVTxfJ+YF+wqCPsSzezn2SiK/YUwHr59krSFy /sMPk2/aRqht3Nhce63Zb7/obRRhUemyVCCYYQlYOikQOdYAiWwmoVNyVOt4vo6XKyUJUTz7KR4g ti+EFU5/l0YIHIybaGK9RM83dFJC4BSTpyn6XgXYIrYpOT1Y57Q6xohFxHxIfKY0Le8AeRtNVQRD Z/LUmnsLS1r0M8gT2G+/NffcY3PHbEgMbCPRcvrTpk1EYfOLUItSZ6nAB+50hZ0rIahBKAHsmURY GlVaKpgpzJUsA4mYKOkkIe8y8sZhGUMgQfaCUolY1SPRAtFSrSsBlgqmGHHDtGIdmF540vcRxkr9 0ukMTnQsFUmRpu/BUkE/0w9EWTIHHnvMjBhhXSkc9xCbFnjKxRebnXfOlyvF63BptFRKllacSmBX 4ZjV6puF0wTzloi3Kh+8d8wmhGNXSZ2ID0tFa7B5LGl2NTjSEmFJZ6FjkmCSAZggrFhGZOrWT06i uYMNniEA/eQSMn4UstzhU+EhU0znzhY/Gw+0delC1Gak4jEpLEFOY9KZwLvBplw3gXBMpTPM04SI LkkGrnnpVcj6rVt86vUzPTmX7lIgZ+fMMaefboYMsWYKqT+ApICcPe20mJgpiMdZKnHXUXyziiNr gcIhcYzitOzseCAw7kqWbf9YxTnb4sm2gri/J3lVFIcOY25BP5N1HTIjpQGFwxSa0SsJKizzZ04x lFesMG3bmpYtzYIFZrPNzDHHmKlTTZ8+pnLlWPHBWSqxEkchnZHEHHHvZQ79g0DF21b1HiPEp9jn h17r1k+GnnrxqScwywUCVz2QFGLO3n+/IYxv7dpm8GAzY4Y5+GBuP+cwo4fyqrNUQmFrgJWCAMgI whlg0xFUhXcdDIfWO9gwkPNjxSAVCATioBhmxK00stQGAAKIYCxl1YTop1aQiuinVhAV1CE4CMxG P597zlx4obnsMvPJJ9Yuwa3CfZ9OnWzQlFg+zlKJpVh8nVKccR4qQQpzxU6xKcYyoDWWg0yUhCZC ReM+irLtn+inYlMMOwwCFQP20U+tN8y9+TMzU+y772wAN0Ljjx9vL/g0bGhRtHffbQ4/PO8XfIoZ ps5SyXYOi+o9coEqxqngmP3qq6+SEt4mC5lzhAyBWbyYiFc4OwAEwE3sRPQ2i06imYgvJxxAFq1G +AoQHAhUjFPRneub+ZNwTenqJxG5XnjBnHGGue46s2qV2XprGyjlgQfMOeeYLbeMUOmyacpZKtlw Lcp3uGVHUIcoW4yyLU5YscMUHyQDFlZsaKIq6CdPlDoTZVuYYuSqVYz4Fv1UDBTDFFOsnzJ/prXT W7bMXH+9adTIcO5D9hLgKdgoXEvmpk8Skpk4SyXKeS+btnTfAoUjDDbFE6Vcw85G8Al5B+oUE6he fKWBQPXTSwkEgpwlktsJJ1i75McfrWnC1Z6HHrIRU+KHnC1q2nOWStwXBA5ZOUuOey+z7R9YWgIs KsapAHGAwGzZk4D3dONUwCoSoDYzHEAChPZPF8FRoZ+KIe2AqIKMNB8z4QIwQnzF4ag+/NB07Gia NjWLFhHZyd5GnjLFhkshlU+iHmepxF1cmCmKJ0ruVjCPKAb0YYQpnihB1JLnIf0sSHEfbAX6J/oZ Vq7aGLCD8KYQmH5u8Bh0ObMuoJyKd3qin4Xv9MgsOHSoadHCTJhgwA+QAHn4cIucPfTQRBz3pIjZ WSqZ6X30pb/88ktAtdG3G02LQPlIzEHGgGiai74VUA4QGH270bQouZQVh7YDAUBeFYQYDT+jb4Vc yuinYkQt+qkY0i7zZyFIuPffN61bmy5dzHvvWeRsu3bm3nttBp9tt41exwJp0VkqgbAxxEqYKxXP Iyx14IUVHyQDFlYMiEbvJbFRiAMgr1WLfipGfIt+Kh6A6GdagNO8qlnWjRein19/bW6/3V45fvBB ewl5n33MuHHWlbLrrkl0pXiccZZK1koS3YuK4zLBRN3UlQYCFZ8diPh0q6hu6qKbpvPUkhWfd3ln 7lx75RgYCm74ihXNDTfYhD6AVLbYIk+9C6xZZ6kExsqQKgKxqPicFSgfgaeyibEYEruDrlZ95Lft t98eFQ2abXGpDwRV1apV1Ud+U4yoRT91RyasXLXqVuXKGY6Yu3e3ZsrTT1vk7Mkn23huvXqZGjUS 7UpxPpW4TIUl9oMNq+49K7Ok4l0dslO8DOB8hjrd+omxolg/IU2xfjK7Qp1mAjfZZNPNNitLtFkc J7172/Q9mCZ33WUmT7ahU5IQKKXEFVAKOJ9KmozKWzES1SoG9HFMDuRNMdCBwFMQmDftCb9hQmSS rjb8dvLTAhCx1atXKw4dJvqpGIiDfirO9W3efXd9u3abAJV9/XUbHOW882w8t4suMttvn58BE1qr zlIJjbUBVexyKQfEyPxU43Ip54fvwbWKsaI4tJ3Tz+A0JdqaSGExYcImjRptM23aJlxC3mMPM3Kk GTXKZkJW5Epxpz/RalUOrXFXXnG4ERhDRAfFxwfIDgJzkH/cXyXWiOJwIxyOID7Fxwein4qPt1BO hYEl8aCQ/bh9e7NyJdmP119yiXn0UXP++QqQs0XNd86nEveVYIcddtg2sZfgS2QuE2X16tUVL3Wg oSGwRD4ktAArHCFcUdGE9r/EboP1rlGjhmJIO4HR0E/Fppg2/STHFul7mjc3XPMBOXvUURaSMniw qVlTpSvF+VRKnKPiUoCDZMUBOYBkEtdOccAYZKc4cB/i++GHH1DRuIyWoPvB2Sux0RQPQIIuop+K 46mgn3pShMqV4379zNKlpnJlLiH/OXnyVyecQDycoBU/dvU5n0rsRJLSISZK3SsBeDfFlgoJ2TUD +oxBPxWbYlgq4IUVx1AW/VSMqEU/MVbiPsuX2L8vvjBXXmlPfB57zPpOSDdIYLdevf6sWXPt0qXr 9CYzdz6VElUjLgUUb3fiwmLXD8eBojngBqDTjnxyACtk6lRz/PE2iQ8o2rp1zaBB9oKPpO/57bdS op/Op5JPJUynbc7IFUMy1WcolAxw6Qg6oWVKQwY4xTgq0U/FiNpk6+dbb5lLLzWtWhny+ADMJxMy yNnLLjOEetvwFJehMKETShHddpZK3OVZrlw5xSEyGWlEOFV8uYmVQHEIV1Y49JMn7qMo2/6hmQQ5 VbxVIE87+qkYUYtyJjLX908/mWHDLHKWTMik79lvPzN6tA07u8sufuQsgkN8ivXTnf5kO3VF/p6L /BY5y4NsUHfkNzzPpSHym2KgGGhT9ZHfvv322yCHdAR1PfecOeMMc/nl5rPPzKabmltuMfffbz0r fP73A8IP8SmOTOgslQjULZgmQPPpzgXKMqAY0IfsFK9zqDj6qRhwimYiPsWIb9FPxViHhOnnihWm Tx9z9tkb0/eceKKFpNx0k9l550IvISM4xKd4gXCWSjBmRAS1uLwqETA5vCY43lJ8tgXfdOdV4XhL d94fp5/hjf3Mav79dzN/vk0xiF3y5ZemWjVz441m+nTTpEnxgVLQT8WHd85SyUyL8liaRKCJPGdN j2WSS1lhEMm/ydedSxkqdedSJvJbtWrVEGJ66py8UqKfipc6whImIJfyp5+aLl3MSSeZl16y8dyw TriE3LOn2Wab4lUKMwXxATZKnuZl2GOHqM2QYfkortg3CzvVU6eYQMV3RmSgIzt58jHuI2rTURcR o4tqZuxY60oZMcL88ovZdVdz553mnnvST9+jW3zOp5Jn5Uy/efWI2i+++EJ3LmUITF/cySpZShC1 ihGLIGrRT8VAMRDf8UXUvvmmxcmSCfmNN+wRDzmQOe7p3NlsvXWa8wAIKsSnWD+dpZKmJuS/GMlO dVvNuglEdooz8TI8oE49gYoHYGnQzzjaYT/+aIPic8ozZYoBobLXXmb2bJu+Z889M03fo3v+dJZK /k2QNHtA1CnFkEzJVetyKaepDDEsVhpyKSsegKUhl3LsAvc9/rg591ybaJBMyJUqWYQK6QZPPdXG dsvwUZ/r2+NHGa3bhcGDB0/Z8NQl/HCSH0xm1FErIEBAAOoJVGyK6dZPZg525IhP8QBEgooJFIdf XAYgmQWJ3nbbbUaSeh5zjOne3eZD5ugn20e3fjqfSrZ6Efl7pNdSfAzJPOIyFEauU4E1KKmwFWco BAeAfioOGEOGQmAcis/vUM64ZCjkfIdw+D16WDNlhx3M7bebGTPM0UfnYqao109nqQQ2WYddEblA 1VsqiiMXscipz6WMioY9CvJVfynJpazYUolFLuWPPjIdO5oOHcwrr9hLyK1bWxvlqqtMzhnBZKen 2JJ2lkq+pj7XbioHFB/9CKlaDw5KiSqrF58jMERN/uEHwyXkpk3t/998Yy8hjxpl7rrLHH54Lq4U f4fVz59CrIunEqKWBlI1UX0UB0ZjmBF7Ki6nyIEI7N+VEDpMcdwwaEU/FQeeQjMRH0IMQTViUaXo p2JjBeXMWwK/d9+1F4/598EHhuCBoGjB0l5wQfqXkEtUEQRH/lrF+ulxwCFqS1SGPBdQj1gUQF+e uRxa8wIZVkxgvBCLQcvRIb6D5mjU9eVHP1etMuPHm7vvNnzgOfJIc8klpkWLoPwofiaqXyCcTyXq MZNde7ojv0kuUMWR3yRXbXaij/9bpSTym+Ick6KfilMwEvktaqAYjpPzzrOXejBTttvOXHGFDY1P 0sEcLvgUNRUguNWrVysGMnqEq93Lxn+WT7OHaOGvv/6aZuHEFWOpY65UPFECFobAxMkl/Q6jn4on Sjas3BxRjPhmk4B+ao1VgRqjnNxvSl+fcypJJuTLLzdt2phnnrHIWa4fz5ljBg0iOVZO1Rb9MvqJ +BTrp7NUQtKc4KtVHOpgo1tPb7AKCOQgWfHRDwRCnW4Cyd6nGMbh9DOYKfuPP8y4cRY5O2yYWbPG VK5sYbPTppnDDgvDleLvs/oFwp3+BKOiYddSvnx5xZBMlgGSnSpGhIF3g8CwlSSP9ZOodjtc3Eof QrhWqlRJMWRY9FNxLmX0kyk0XPUkfQ9HPOTrWbDAlC1r7RVcKQBpiT8b8oN+Ij7F+ul8KiFrUHDV c/FHcTBv9dH0WQPydvUgOCUsqibEh37qvpuG+BQv5KUhmn6I+vntt/b6cfPm1oOybp1N3zNkiHWl HHhg2K4UGZLq509nqYQ/iwfUwtdffx2XGIsBUeSvBoTKqlWrFANxOEWGwBA4F4sqwTd89dVXgBZj 0ZsQOgECAPEpRtT++OOPEKgYKIZ+MoWGoBrGvPqqjeGG72TxYotKuewy88ADNjFyhDcZHaI2FMm6 SrPgAFEyFUeQhCGKZ0moQ3a6CUQ/45irNouRVsQrGCuKB6B6/WT0Ba+fX31levWyofEfe4y8UNaD cv/91ptCYLcQLvgUo8tsFXTrp/OpBDeThVwT7lnFzmeYB0hFMWIR2SlG4SA+9FM3gZwdKB6A4DF1 iw/9DPL0HLvk4YdNkybm5pvNkiVm223NLbeYhx4K6RJyOmsL+qkb0i5McLeU01GGfJYBMLUt40Hp wyRSo0aNEA+S88030NAQmO9ehNU+JmblypUVQ4ZZxRGfYkg7cwsEBrmWh6VrWdYLIDow/fzsM3PN NTbUrKTvOeUUM2uWuekmU6VKlp3L+TX1+ul8KjnrSFQVEAxA8XV5vJeAABR713E+K0Y5MAjQz+ji VUQ16Lx20EzEp/j8jrkFAhXHUwlGP0HOcgkZV8rgwYZ8nLvtZk9/iOeWWybk3NVZvX46SyV3JYmo BrKWKw4dxhEykDfFMWqZKCEwIl2JvBlWuG+//Xbt2rWRtxxRg6Kfik0xzBQIDB7JEZF8Sm4G5WQK LblcMSW4hEwsfPL1vP++haFwCXnqVHPDDaS8yqnaIF5Wr5/OUglCTVwdQXBAfS5QxSicIOTv6sgn B9SPvpyYy8Xjnj1tvh4uHnPcU7GimT7dXkvmNnK0yNniqSgNM4zDqeSkyRG8TGimLbbYIoKG8tIE Y2ybbbZRjFjkIBkC88LbaBoFw6EYxgFWESSHYsyp6KfipW7rrbfOUj9BzpKsp0cPAzyFGZjYbs89 Z844w5QrF83ISqcV9BPxKYYZOZ9KOmoQizLqY9Ruv/32ilcCDE0IjIUmhdAJVjgC1IYeAzSEnqdZ pfoYoKzi6KfirQLKmfGNBNL39O1r2rWzl3pwpey/v7nnHnPHHWaPPWLlSkGHJca3i1Gb5nB2xULk ADgA3TiVL7/8UjFOBRwABIaoH3mtGpwKiWqjzlUbIclgab/44gvFKRiZW9BPxTgVlDMDHBXpe2bP tsc9wFCIF1etmunWzTzxhMWmRBjPLX0FR3Dop2IclfOppK8MeS65bt06xQu5+rs/crcizzoUZvPM kqhomC3ks271uWpLw92fdPVz0SKbu8e7hMxNnylTTL9+pkKFfKpgsW3L3R/Fl0OdpRJb3UvtmHrI m+6wRepz1ZYG/VQM43D6aSfc334zI0aYs84yo0cb9hU1a9qzHq4lH3lk3I57Cq5bLpdyYtZy3R0l F6hiSCbnrIQOUxz5DZwKBGpVUda5ihserQSCU6latSpC1EogOBX0UzFOBeUsIdf322/bGG5dupj3 3iPisjnvPDN/vv0zxq4UTxvRT8TncCpah2eS6AJtqngekWS8ivesyE6xHcZAQj8VXz1AMyFQsdtP 9FPxAER8RQL2SR0KcvbMM80zz1i3CshZPCujRpnatZOyQsj8qXiBcKc/SVFFA2AqA0RYYsja2FEQ i8uXL1ecS5k82BCYNLGk219gRp9//jkqmu4LSSsHAmDZsmUkHE5ax9Pt7/fff49+Kg7Ci34WAmn/ /XebXLBVK4ucJX0P7hNcKaBSOnSwF5KT86CfiE/xlQtnqSRHGQ1HpWWS1F3XVx8HnOwUqINiISom rUjFW7nSXHedvc7z/PP2EvLBB5v77jMTJpidd44/KkXBaMqOBBf5LTu+RfeW+qnEERidMoXQknpE rdPPELQmuipT9XPyZIucHTTI/PyztUt69zb3329OOim5Nop6/RRdcZZKdGMmu5aqVKmiO7JWrVq1 FAfhJeoUBGYn+vi/xSwJ4BQVjX9Xs+shIIDatWsrhrSXK1euZs2aipFGKGclSWYOcpbDnYsuMgsW WLuES8gvvmiuvz5BqJSCOgwEh+mFOLzZqXeC3nKWStyFxUmk4lTDAB0gUHEqV0Iz6Y52AMRBMcpB 9FNxYDTRT8UD8LcttviD0IviSuHi8S+/mB13tCmRH3jAHHJIcl0psm6JfipeILzl2VkqcbdUvv76 a1Bvce9ltv1joly9erXi0HaA3SAwW/bE/T0mSjLxrlmzJu4dzbZ/LAOrVq1SHLsPsDCYU8Wm2G8z Z/7eurVp29YsXmy23NL6VGbONJdeyqW1bJUiRu+xSWB6UayfzlKJkba5rijmQCk5RVYsQUhzQkyk fAmH369fxU6dyj31lEXONmxobyDfdZfZe++ku1JSxFEa9NP5VOI+BjkpV5zAjzG25ZZb6o5XAYFx V7Ic+gfGSDHMCP0krJbieBUgVNBPhUvdnDmmUSMLQ/nqK7PttjZMPsjZNm302SiIT7F+Op9KDnNz tK+S6VQxoI8xBiRTcWw0wG4QGK3KRNcaKxypXBUni2aTUK1aNQK5RsfTaFtibkE/VS11XEImUArH PSBnOZ48+uj1pEQeONDCU9Q9GJrop+IYys5SSYzOAlJRnMoVLBjJThVjTkngpzjVMAvBd999pxtH BVBMca5a5hb0Uwkkk4vHIGcJlIL7ZO1aU7266dHj6+HDvz3ooGTFc0t/cQJgBEos3RSM6dcbv5Lu 9Cd+Mvl3j0BLKVZEpkiiuCoG9BF+FwLjrmQ59A/IsOIQmWgmdphiS1r0U4Ol8uqr5vLLrSvltdes OjdubMaONd27/1+5cj8DWFH6IDgw0Yr10/lUlGpuAslSfENSpKGewAQqXQZdRny6JZh46kDLDh1q zj7bmiZ8rlfPfpg2bWM8NwLn86XeR71+iuicTyXuKkzYN8WBfcDSVqpUSTFkmCNkCIy7kmXbP3Aq JKotIVdttpXH4T3JVasYByD6mWBI+0sv2RhupD5etsyULWtju82aZdq1M1ttJfpDLnrFkTMBGCE+ l0s5DnNFae8D0G7FCzlTJHNlgifKktQT2Sle56CeWVLx5SZMMcSnOIQrYPakDkCi+HTvbk4/3XDN 56+/bCbkGTPMnXeaPfbwX/BBORXfTZP5U7F+utOfklaY2PwOYEox0AEcAJG1dEd+g8DYaFPAHSkN kd9WrlypOLIWcwv6mbAow5zmzJ1rzjzTZu355hubCZmUyLhSsFr+dqV4ik5kQsWQdhf5LeAZzasO 7M9bb731wAMPPPjggytWrPA38957740bN+5e3zNlw/Pkk0+mQEoJqjh79uyZM2cuXbo0rI7Gpl7W csWAU5Y6BlviT8qL1hZkl7BlIEPN1x1NH2ZAoOIBCCQzYfr5xhv2rEey9mCyYK9MmmR69TKS3KfA o1s/1Wcj8eRZJrJFgoZmzZqF5fHxxx8vWrSIs+3hw4efccYZXleGDRt20003cawo3+B3RcnwKBx2 2GHTp08n05t8j40yYsQIKqHCunXrdurUqWnTpgXdX4MHDxZDhzIZzr3xKs6WDgd7xYoV49WtgHqD 5bp8+XJCAmg9auUSL1u6nXbaKSCGxasaxiD7DVzQNYpYJ+LV3cx7w9UY9BMoAJn8Mn87AW98++23 a9euJctdAo6YwcaCk+3Rw3z6qeUsY4qbPldcYQO7Ff0gPsAc1bmxrPHBGy366a2PGqm0NEWHqGVf 8uyzzy5cuPCkk046/fTTOTtMQSe0aNHimWeewZqRB4vk3HPPJebSfvvt54U+mz9//pVXXoldMnXq VBwzxCy65ppr5uIJ1PsoniURGqJkkVN8kIzqal3FZTthc9XqhQwD4yDVsGJIOysc+pkAoMNnn9mL xxdcsNFMOeUU9qzmxhuLN1NQUfST4IRa1wfsS8SnODKhJ7joLBXskuuvvx5T49Zbb23QoEFBXw7z 3b777rvX388ee+yBO4E1rFWrVhLsmSBFffr0YdYYNGjQQQcd1LBhw549e1Jg0qRJ7Ay06iJWc8Lc s5lIAuczR3sawjkUQTUGuuJwOBCNfiqGGaGZuFUUn/6IfkbmWc9kbvi77E8/2cOdE080Tzxh1q0z u+9uxo83992XgpwtqmaUU3G4EfX6mR9LBfOWK3/Y7+mM/Lfffvudd97h6AeTRbr7ySefAEw5+uij d9llF/mmXr16HTp0ePXVV1+TaD//frBvFGzWOT5QDOhjpHHAp9gUQ3aKUw2zwnG2xfFBNitQEt5B M7/44gvFMWrRTzCn8d0qvPCCPeK5+WabCXmbbUynTtaVwiXk8uXTVB/0kyk0zcKJK8ZK+uWXX+re C4lQovOp+JUgHRMe4C0ncCeffLKXk4I/cczUr1/fX9Xhhx9OkL4UcC4FMFMwpZcsWcJPvMgDyl3Q VbQuODIKIGkBdfKZ//ne+8kryU9Skmr53yvpf5HP8lM6JWlCSkoTxdTpleSDv6TX7RSKvD8FyEkT 8qJ8z58SJsijtyhW+F9M6WcK0wotWSh7C5aEnx6BJbJXSgq8sSDT5CePwGJKCivENpJ+Fs80kZHH NK/1FPZ6XBKMm/yZQqBXifTTT3tB/SlGJ/2aVlSdftVKX9M89vpb9/THGxHCMWGFUMFnv6b5S3oK 49dJOCNNFM8Kr04pWXB4FsoKapaS8pZftQpqrwjXE1lB1fIT6CmhCNcbuYXqpH+UebT7R643Ivza mzJ2ip8cpAkh0OOnf07zmOaxwq9pQjvlxXHr18litNdjr7/1QvuZMh79TRTUNE8QKNbvxEvktgSu lFNPtXePQc4efvgfI0f+MWLE7/Xq/bUhmmKKyLzOFDrdeWM8ffYWOp+n6E9Rei4C9WtvMewtqqSn P4WuO36KpLmUIZ+iaQVn/uJ1snjt9cZjymqSUmf6y6X0vxhLMTpErb8TnNqMHz9+yJAhAFYK7Ry7 tEsvvXTevHmPP/74nnvuKWUmT57M6c/NN9/csmVL760333wT4MsNN9wAfsVfFajbAQMGSNQmWIC5 065du0MPPZQP4DfZSZDOA00C2AuGl8tEbJvk0B2XD38iCfwxlMQMwipHHpw6cSLIBou+UQlZ2aiZ kjiHKQlii5LUSR+AJlAPP/ENppWUXL16NXVSOSX5wJ+UBEZKE7IrTSlJE3Xq1KGfeJI4jARRCyiH +ontTT/pMwfMVCKOd+qkh/zJ/9RJSerEMuNPzmjpOYaaDBsO3SnPsRqfOYOndYrRurCCVqgEVtAZ KqEhqIB79J+S7L2giBcpCVFUIn5jju0owF1H6CJ6gZ9pxFySOjm5gyLEwf9SJ0wDx0c/P/30U2ih JC/CXvpD63QbQoRAYS8h23FO0CXIoUVK8o0EjqOAUMSfEEjlAvOkBgRBE8I0StI9+sn44dfatWvT K3YkIghKUj91Ug/UgaCEaTJ4/OzlSBgqEASsoB5JD0Zz0E4TlIST9I2fhGmQwAN1HntpFDWAvTQE KyhJnfwJe0VkCBfyoYiS9JOO+ZmGEkKOXLz0s1fqpDbq5CcBWLCbpKuSEJjOQKzoJCTANLmeSklh Lx3gJ7QX8iGB1mVEUHIZYbU2PIhMtFfq5NfPPvuMd2GXCELqFPgRikSdMnZoUeqEP5SEG/hHES4t 0jGPabTOrwhCNI36YQ7spaQQSOVQQXlhr7dj9rOC8cKLsIKSwl4ZuaIGUpJ+0j0YS0n6AEXUCSso iRToAF/SSXoOeF+0TlqHvfxJZxieHDrDXkrShOikxzSq8thLP2GRTA60jnwRrqzi/ERvIVAWEtgL pXTbYxqfeZcW/SLjFUTmTWIMH6igTigS7aUV6mRq8piGIGAF7KUeGch0hs+UR4Iwk6EBgYxoERnf oD/0WQiUbkM7BNI6Jem/9JOSMI3PKJswzZuaRLgy4fA/L1InTYumUScPddIoBDIesblWffllmc03 r/DIIxXHji2Dp3z9+nXbbbfuggv+e/nln2+zzbo1azCsaB1Ng0Ao4gN/UieyQIJ0kg4Ie/lTpIlc EB8twjRYJDM/nRSdFPbK5OBNODIxUicECnv5yZsc6DZNwF6kTOsiMur02FtwEhPVQmS0SE9oiz9F f1BC+swIognqlBXKz17+RCFFe1FdaBHVktkPZiIUCbtFZ+ikTA6yRtAcdfIizcnkQD8pDEWSsQsC vbEj8zlskXmSJvjAn7CXNYLXmZc82mmCSmjUWy6ldRFECitkcpDOyBpB69Qp7OVFmoMKrr8UBZmK qaXy2GOPAU/hZAdQiwdKx7jp379/7969mzVr5rdUGjVqBK72qquu8lsqQ4cOHTNmTOfOndFOOI6o dtttNzgroZz4RjxmKBCMg0eyJjH5In7+lGWPCQgthLn8BAf5k5/4hkp4i29k5pWS6JbUSYephyHB N/zpL8mLlOQVSTpIDZSkfjE4UkoibGqQuQ/1pdteSaROz/lJtlPUSYeLqpP+yBiTkvwvx0kpBFIh 1Uqdsg7xv7BC+gl1QpEwjUqkdek2f1JS+umxws/elDppnSEHRWIjSoS0QplWkL20SElPZDQqrcuK AnuFwBT2QkJKSWoQx34KgTLsqYSqCmWvsEKmaWGvv6QsGJ7IZKZIYS8vUkZK0rpHO38iBT97C+qk n70UFlaIYntqIOxFr0Qn6Qyi99jrZ0Xx7JWwYF5mH2GvX9OkThGun700h3oIe2GRX2QSjIvpj6q8 bgsrUsYOdYpqeSX5IHUKRVAnY8evkyl1eiPX096i9DyFFTLKRM/5qRj2phAoTBOdTKlT1MBTLX9J qIC9KUzzBl2KyPyTmDDNm8Son0d0siB7Yb5XpzdyKSnq6k2M/ElnKClmRKHa66mBqJYIwmOa13rK hONp778mMUbuttsy2H5+913Tv/9W06dvvmHWxafyR5cufxx11OabbvrLTz/hbpFZ2tO0lAnHTzsl Jeii9FPmXo/AgppGVf753Jv5/exFoDBNtEJmfpooXmQpa4RMd6K9zAzCXj8rCq4RNOHpuX+ylUEn I4LPKfN5MXWmrCYp83lB9gorhHZPtYS93hohrEiHvdK6n738CT95F6uFCv3r+D+fxZaP+LnlllvY kXC7p9B2YX2vXr0wM5977jl/gXvuuYejH+Kt+L984403MDO5k5xSlaBuMfciJi3w5mT7Hni1MamQ QS7eppj0J/BusGCIr0vlw1BlN4mKqqQOophPxbmllUCJ/CYO1zw/7KYmTsStxI7K/qtZc/2oUes3 bPpzedjHi1Nc5cPMietXsX56UssPTqVwo+nvb3EfEe2Ny8k777yzvyTuLAwunF3+L/FfYW8Weo0Q IsWaTvSDsakY0IelojsXKHsR8bRrfRhiinMps4QjPvGqqnwwxRBf8RCBKAjnoIcbyOefb5Yvxz9m OnY0M2fab4qNlZJOx5g8dd9IYAAq1k9PxPm0VIry8+AmWbBgwYEHHsgJmV8XccMwot7FPfj3gy1C MBXOZbVG1oJQaExnQCa3jFjNye1/iT1XT50jsEQdiHOBPIuPnefgwTbm7P332/Q9DRuau+6y6XvI 41PUQUAm3HTTSybcim/Z/FgqgpopNCoiNj7nO8B/uPXD0Zefc5gj++yzzwsvvPDKK6/I98SRIwTc Mcccc8ABB8SXx7n1DKSVnLaqfBAxh3cJiI+ZLfc52dUaXxiWsNkQXGS27In7e5ypIz7FKRgl/nXK TBudVJ5/3rRubbp2NV98YdP3dO5spkwx7duDdgmqDyin1vjCsAjBcdSgWD89NYgUUUvgk2nTpmGm YGq8//77WBgYHyB0Lr/8cm82B2nPXZ6jjjpq7NixBWHAOFTat2+PZ4Uw/Pz68MMPAyEeOXLkEUcc kaLZaqLpy46nSJxRUAM6f/VAoG7q1ItPPYFOP4OfHjhQ69bNPPCA2XBVzRx0kL2TfOSRAdoo0mc3 fwYvu3zUGKlPBejWU089Rch8ztWI3sY1M/Aozz//vB+HsXjxYq7qYakUeluJALZ33HEHIW6p5Ikn nuA8CORsQTMlH5wMq00QYYojF2F0cgNWceQiEIveFd+wVCR/9bIMgBeWe9EqH1y8xGRSnMwcnB/6 GSlOhStCpO85/HB7xIPmEDehXz/z0EPmhBMCN1PQSfRTIhGofEDUcttfNxJOBBepTwV4mtxrZY/C 450gYpR4uxYp4EV7K0q95MKh/8WUkmp8KkC78dBqTV2BHMU21ZqhEHg4sRB23XVXlRMlQ5h1jsFL MAyVBLKnQj+JbsBVRJUEci+Gq1vEsYjoBPaTT6yBMny4DebG4f5JJ1lXyn77BQJJKVRALOSsJhJH St+DJS36qfgEVqQWqU+FQzXGAw8WBtrD//Kn37nK9yWaKfS74Iv6tNCjSLHzWcxW3bJzBCZavsxa iiUom8YoBIQrZcQIc+aZG82UBg3M3Xdb50pAyNmiSIiOwCiYWEgbecMYRUtvpJZKtKQpaQ0Ej5dK WglJPjIkhmZE+7l8sE/iz+aj5SjaZBng5p1iyDD6KWGIo+BmPtqQ2LvpbA5z6t1LL5k2bcyll5oP PiD6pE3fA3KWS8hbb51TtWm8jH6COU2jYCKLoJ84VBTrpycVZ6nEXUF1b+msW0/7nlX3pkeCY8Z9 FGXbP6EuIq9Dtp3M5b3QCSQ74MCBpnlz6z7hxIdLmuPGmaFDbUrkSHw56n0q6gkU9VY7xeQyemP1 LgfJigFTQPmADEscbpWPZPpQSRpEgVOR1DBaCZQkRwoCSBYlIMK+oZ+hIGoJjkIm5BNPNNdcA67V Zj8mJTKZkLFaNtssMoVBOcGKRdZcxA3J/Kk4NKjzqUSsUdk3B8RYcspofRhseY49FSZnkV0oy0CY fc6obvRTUPBaH8l1p5W6sPSTULM33GBIQLtggXWlnHaaDeyGpbIhYWGUj3r9ZHrRPQBFW5xPJcpR k01bki0vmzeT8A6uSw5ZQz8mzx8rJPNi/toPvWUubWm9t2Xnxw2JHhUPQNHPII+3sOqmTzetWpFo 0Kxda+rVM7fcYiZNstd8IjnuSdF4lFNxYDQEBxKOFIOhj/N8N+AslXxLoKT2SwOiVvFIc4jakhQ8 1r8L4luxrSmI2kKDV2UjGC4hE2G2ZUvz4ovWlXL22WbqVHPTTfboJ0+PekQt4lO8VfC0xlkqeRpA aTdL1CnFx+S4LgHiKD4fIagdBKYt7YQV5NiO0GGKA6OJfiqOTMjcAoEBHB/88YfN18Nxz8SJhs/1 65sxY8yoUaHGSklntKCfinF+CA4gjmL9dJZKOkoeizJA3hQroix1ui0VCIyFJoXTCZYBxSsBMA4i RCtGfBPaDv3MFYjz+uumaVNz2WXm44+t++Tii80TT5gOHXLPhJy7zqKcunN9s0+QOKi6H+dTibt8 FaNNhfWOwLirYLH9052rFupYxXWraE7UrVlj+vSxgfAJhw+wmmizHPcQhTY2MWFLg37mamgmYQJy lkrcpUSYZLAOce9ltv0DschBsmLEIkfIEJgtexLwHmHmtUaah/sAOCpVqqQYBwAEB/3MMiLOzJmm bVsLQyFoSpUqpndvM2uWvZZctmx8FBflVBxpHv0k0Ypi/XSnP/EZSiX0BMibYuw6UyTziOK7P6QK VzxRcvWAAMqoaGKGU4YdZSVgqUOIGb6XmOKinxlbKosX20vImCmPPmqRs82a2ds9118fH1eKJwDd +inzp+IbCc5SScxU8tVXXykGOoAII6U2h+WJkUeGHeWYHAIzfCkxxXGtE3hKca5aECqkCFUMxAHl gH5mgKgFLYt10rixufVW8+OPhkwRQ4ZY8CwHQPm4hFziUEE5mUJLLJbQAiD8Vq5cSXjJhPY//W67 05/0eZWfksyVigGnLHWYKYrPWVkDFNthDAn0UzHgFP0Ez57BQp6fSSL7VkU/04WqLFpkLyG3aGE+ /NDgZzr3XPPYYxZIW65c9j0I+U2oc/oZMo+jqN5ZKlFwOZc2OBkJMi5TLl0J513dBCI7xWdbaAT+ Z90EOv204x4kCsl6Tj7ZTJ5sfvrJ7L23GTnSTJhgSIkcS1eKN1chPqef4czckdbqLJVI2Z1FYyQC VZxLmUmEXKCJOGclNxHe7pSHM/offihOqmA4IDALuSflFfW5lNVHfkM/S1jLSd/DleMrrzTAU8Ak kRJZsLSbbhp/LVUf+c3lUo6/EroeauBAup7nvNLKSff555uuXe3e0v8MGGDOPNO8/36RndN9SbKU 5HHNq+qF3jgqWqTXlqCF5Bc85xwzY4ZFzhIRnw84V3bcMfRuBdSA7gEYEJMSUI3zqcRdSCQCVRy5 iGNyIG/xP0jmXH7KFAscZN4mmYk8o0fbG5rPPGPznDCNF/oQA1Qx4FRyKSsOwgtE7PPPP1ccJJq5 Bf0sBAlHcJQ5cywkZeBAs2qVRc5K+p64ImeLmsdRzrXeiI37ZJ9x/ySXsmL99DjiLJWMlSPiF9Tn UobA+LtVDjzQ3nUgTgTGynXX2ST2fABKyKUlgnOCMizqsB6wsGI8JmNBfa7aROhn1pMSQy9VP7FR PvvMXHWVTd+DGU72u2OPtcjZ7t1NpUpZN5SvF51+5ovzwbbrLJVg+Rl8bWA4AssfFnzvcq0RtzMR HeIPeSMdMt6Unj0NQfhIZtKokf0TM4U956BBxUWRgDTF4XAQP+JTHG4E/UR88dfPrMchcwvi++f0 B9QVMWdBznL3mLuvO+1ks/nMnm2Rs8l8oC4RMLjsuKtePz22lIn/djY7EQ4ePHjKhqdu3brZ1RCT t9gToI4Zh2aKSe9L6oZs6ZJyvYKE9n372lCc69ZZwpjPScdW/D4TnwqPYltTduRa13LRT0af1gEo +ll2003LIMXHH7euQpAoKDoP8dz+9z+z774xv91T/ByjWz+hnaQ/jD6t+ulOf0paQmPzO1Gnfvnl l9h0J+COsBKQAS4pAWM22cTmXPMgKThattyyBIYQzgECA+ZabKpDfLozFLLOgXJQHBFn3e+/r123 7q9PPrGulDZtLOQKM2X33a0rZezYvGdCzl3TdWcoRD+JCxp/nF/ucnSnP7nzMNwaUETFgClGGpC3 pFgqZF7jsJ5DnwoViCNir2p262aKz5SMlakYcIrqs5ArjqGMZgIZVpzM/Jd163584IH1zZubG280 pBvcbDOLukKzO3WKQybk3OdW9JM4vLnXE88amD9166fzqcRT8Qrple6wb0kRA14tNpkkNsE/Ajbl uedMv37WWCH81dVXG73RupMin7D6qXz0ffrpdldfXfvSSzd95x3LQXDj995rRowwu+wSFkPzUa9W hEM+eJm3Np1PJW+sT7Nhkp3qRixuu+228Uc5vPGG6dzZBuckegqelT33tLFVevWysa842cdNXtQD mg8C05R1EosR2k53rm/EpxCSCVqWK8ennbbJmDFlf/7ZVK9uLe4XXzQ4V3SlY0Q/mUKTOLLS6TPw FOKCKs5F73wq6ahBLMqQylV3rtpKlSrFf6TVqmVvI2OmcCVCILTcWOb6D16WQw81DRsWqSqs4hAY C00KoRO4HIihjIqGUHcsqgQKrTAG6JNPmo4dTbt25qOPCAP01/HHm/vuM7fdZo9+1D3oJ486sjYS pFM/C5OW86nEXYdBOShO5SqRi+KPCMNSwXeCX7xmzX8UBocKlgoR4Y47rkgtIs0pBMZdybLtX2mI /LZ69Wo9uWpRRa7at2pltRZk+M47/9inz+oBA/448shEX/ApRn/VRyZEPxUDGZ1PJdu5OfL3gGTG fyHPmityeSQRsdHIF1swgQ+ecoyYYh5kp9jQhHBmScUTJZqJ+LgImrWGx+VFLtY/9ZT1o/ToYb7+ 2sZzIxPyPff8ftVVP2277XoFBBbBaJRT8d1J9JMow4oXCGepxGUCKbEfSYk1UiIhRRXAgakYt8hB suJgKhtOwTTnqkUzNejn55+bU06xh5dETMGVgnF9993WSdiwYZl16zbdEBFH61Ma9FN9MBWU053+ xH2EAgLQnUu5cuXKChGLf6sVaD4IjLuS5dC/ihUrKsYBgKBKNk4FZwmX1ho3ttfVAITjA7zkEhsj n3ybG2IB/XfLLdHP+EPas9ZQ9FM3jgrxbbXVVlnzJykvOksl7pLCXlbscrDGsmoCFccXRnaSS1n3 li7BAUCxTi691Fx+uXnzTetK2Wcf60cZNszGyP/7US8+xfGFRYa65093+hN3A8Xrn25ELees5KpV fM4KGBMCE6NtGXZUPaIWhEoiEbVkDx461KYYJEnVH38Yrun272+mTjWtW6cgZ0U/EwEUy1A3NxZX j6hFfIqBOM5SyU7t8/BWacilTOaRPHA2kiZLQy7lpIQYzk7gUJck/cR38tprNjohd+jFRD7tNDN3 rv2zsHhu6vUT8Sm2wxCv+gVio+sou9Hr3oqMA4R9UwzJlFygio8PkJ3LpRzZYAm8IdHPxAxATBNy Cp5wgr3m89tvhuSspNMk7OwxxxR1CVn0U/H5cmnIpZwY/cxhfLpcyjkwL5JXJRS04qlEN4G6qUMz 1ROI1yEZlvTDD5ubbzZEU+b573/N4YfbCz516hQ/S5UG8QmaKpLZOupGEB9PMvQzN944RG1u/Av/ bfUZCjlIVnx8wBEyBIavJnlrgUzRipNFS4bCuOMAXn3VXHSRPeURM2XnnS1y9oEHSjRTKCv6qfh8 BOVUnEETMzoB+hnE5OQslSC4GGYdui0VRhqQYQ2RtYrQAdLwKs6lzH5O90oQ91y1xHPjLk/bthY5 i/OVeG6XXWamTTPnnGO22SadaUlyfScJiJMOVb4yzJ+6cykjPsW5vj1JOkslQ8WPvLhWv+U/Kqj6 ljJk6vbNKnati4rGVHzYJe++ay2SLl3Mxx/bjnIJGUjKHXfYD5k8MSUwExKKKVsa9FP9GmGHYUD6 4KoJiwNE9VGcS5lZkvyLigNPEdROcYJJlJ4UjOpz1cYuMuE335jrrjPHHmtmz7aXkEmBeeWVBpxK s2Y2u3cmj+inYmMF/VQcGE3mz/hneM1EJQsv6yyV3HkYbg0EAFW81DHSEpFLOWsZs4qrz6WsOEYt typiFwOUiPiERbn9dpu+h6dRI/Pgg9aVUq1aFloqub4VWyq6c32zx4udfmahhWm84iyVNJiU1yLq I78lIpdy1iqgPpfymjVrFANxJPJbXFIwLlliune38dwee8yiUmrUMLfeaubMsdd8sr3bQn473ZHf 0M9vv/026/Eb8xdBfMdIP8NklrNUwuRuEHWrz6XMWq746gFLHQQGoQgxrQP9jMtCHgKHgAwjvlgg vu+/3x7u9OpliD/L06mTmT7dngFtktMcDmmIT+4qq3zQz7hf3cqB7wgO8Sm+O+nxJictz4HD7tV0 OaA+rYNuAl1elXQVPa7l8q+fn35qLrjAXHihTd/D06CBRc4OHmwOOihrV4rHbKefcdW7dPuVf/1M t6c5lXOWSk7si+Dl8uXLc5YcQUN5aYJz1h122EExIgycCgTmhbcRNMo6Bw7A4VTCYjXI2YkTTcOG ZuxY8+OPpkIF066dDY3fqpXNihzEI/qpGNKOcjKFBsGqONYBjgqYkWLIsPOpxFHtCu0TF38UL+Tq o+mzBuiOps/lkdhdjQlucIt+5mchJ55bmzbm/PM3HvcceKCZNMmMG2dq1gyOPq4KKY+mr14/WSDy o58BamEaVTmfShpMymsREGGKYyxywrpq1SrFuZRBLEJgXjUoxMY5Jv9qwxNiG3mtGhjHypUro0Ya 4UohfU+TJubRRy1ytlw506OHmTnTnHpq7sc9Kez88ccf0U/FQAeUU3GQaPQT8UWtn/kYks5SyQfX M2lTfapMCFQM6FOfqxbxKQZEM1JZDCIN4frQQ/YScv/+5ssv7TzBJeRZs+yVn+rVM5k20i3r9DNd TsW1nPoFQhjvLJW4KuDf/QIwpTjaAVTqdl0iO/UE6tZPzkciIhAkCgFnQaLIJeStt7bwlMmTzdFH B+5K+ef43+ln3FeAEvrH9BKRfuaVUc5SySv702gcwFQ53L9KH5aBGjVqKA7CS9Q+CFQqPZvim8BT PFoJBCJWq1at0EMvkr7nvvsscpYbPVxCJn0PQVOef960b29RtGE+22yzDfrJMAyzkXzWjXIqhrSj n4hP8ZWLf0zqfCqRazsNDuB8VnyKzLkP6bUUn/7gm9WdPwyMUSzCjaQxlLIogmYSjSPc46333zdX XGFPfD76yPYQ5OyQIfYe8r77ZtHhTF9hbtE9AHXrJ4d3iC9c/cxUpcIp73wq4fA1uFpLQ4zaX3/9 NTiGxasm4jIRhDdefQquNyzk6KdixCILOSFcw0Is/vWXGTrUNG++MRMyjg2CpoCcJapbtjFnM5Wt xFBWvNShn4pj1CI4xKc49KLzqWQ6ol35sDigPtlpach0GpZyxKDesPRz/nx7l4fMgh9+aKk89FAb KOXuu0NCzhbFyLCoi4HgSkkXSokEnU8l7vpMaCbFMA6Gme5cyhwkh45yyKsKo5+Kj8nRT5AcAQc0 WrPG9O1rXSmCnK1Y0fTpY7MMnnRSZK4UT2Ukl7JiY1p9rm8IVAwzcj6VvM7umTSuPkaty6WciTrE q6zEqFUcAxQbJcgYoL//bhYutHd5brjBXkImZc+RR5qnnjLXX2+qVMmLaCXXt+Lradttt51i/XS5 lPMyalyjhXCAQ1aih2llDeesX375pWJIJkfIEKhVfOBU0M/icQDff2/z1fz5ZyoPXn/d/PJL3BkD TgXxBYMDIBPy1Vebww4zH3xgXSk772z69TNPPGH22Sc8LnCpCObzf8rz9tvmu+/sdz/99H8QqBin UqJ+hsf8CGqW+VNxCkbnU4lAi4JpAmi34hCukqtW8USJ7MLCYwajX7nWwipezESJkXbttfagY/Ro uzp7z4QJ5uyzbSDWr7/OtQOhvs/dCqK4BmBJjx9vLx6Dn/35ZyLY25s+U6eaa64JKn1PoUwgPgun TC1amNtv/xfzH37YnHOOufhis3w571n9VHz5Dv1UfPkO/WQfG4B+hjqKgqjc4VSC4GKYdZQSwFSY LMxn3YoRAMLW4vWzbFnDzafFi61RQtYaMVYIHcK1XL7EucABSMyfXAfge+/Z3D0kQyaPD0/dupZ+ QrqFfwkZi+jzzy2fb73VDBy40a31+OPmkkvshWiYz92jTTYpE3P+59i9XMWXY/Phv66eQGFh2R5k lND4vPLKK++9916zZs04p0w0faClSJWpFTPFMAMvTBI4rWEWOUhGfFox0YgPzQTrUFSSwv/8x15q YVEkaAiRzIgIz8LNbv6HH+zFl7vuMlWrxnp0SoZCJJgNkoPDLSi89FLz3HPWRttyS9O5s/2GAyAs uPCfzTazzMdYeest8+yzhomQk7iLLrKulIMOMnh5dt2Vfm0CddCo1aSW+VNrEk2ZP7PUz/A1MMAW ctrR4DPkMjcGwQcffPADc497QuCA7mDJstRpnSXF5aDVyhRlh7riV/FatWy4EA6ACL7asaP9x1TR uLG54w5Tp04IAybQKkV82ZjR2GUcsXTtKkcs5rjj7HEPno1oaeZe0aBBNkrLH39YkAxSWLbMmi93 3mn22sv2C9JADSsegCXqZ6D6kofKstTPPPQ0pyYzsFQ4r33ggQfmcul/w4OZ8vbbb19//fWdOnXq 3Lnz8OHDFQeAyonHub1MLlDduZRXrFihOPIbp8gQmJsKxPdt2auUCBmuXdtCJbjdArQTnAYHIMOH m112iS9dXs9AACxfvjwzSDvHXVgHXPAh1yBAYiw1/BhPPmlOPz0aV0oKWzFWYD7uEy4eYSNuu639 84ADNl6IZlZHPxVHwUY/FS9MCA7x6UbCiT5nYKkwYkeOHIn7RN7EiTJ69OiXXnqJa4pc6Z4yZcq0 adMUY5cSMK26LjoOxJUDr7xibZS/pw7zzDP/wnjGtdeZ9wu06rnnmquu2kjemWeaKVPsiU9UMWcL 7TEIGRxa8uBcIeYcCBX3OA4kiAMZWCqEJV69evXOXK7b8LzzzjsLFiw44ogj7rrrLhwqe+211zPP PLPWGxAJ4kG8u6rYMSuMdwTGWwFL6F06gD7yAV92mQVJnHiiDW/GfR+W8okTk2GspKufK1daSAqZ kMUKw4PETR/uOHHWklcz5ZFH7Ikbl7DoCPeAAM/06mWPobyrWOkSmEw11U1daZg/Re8ysFS4Soqv ScI1cvXrqaee4ozzrLPOqlq1arVq1Q4++OClS5eWBjdUxAO2SpUqSQcFF8MxDllr166tFXAK4dtu uy0ERqwzkTXHMsDYZwYoqkUSOnHl5/LLDXFZjz/e3lXm32mnmW+/NV262M+//RZZZ7NpCCTmjjvu SJja4l6GyOnTLXmcaWGFgZw97zyLosU646wlfw/uEw6gMJ+WLrVBW+jdyJGmTRvr3LrxRtO/v/m/ /zPly5dDPxVDqdBP3bm+69SpozsKdsaWCnMuSyauFE5tX3vttaeffnqnnXY68MADBW6m+EZ+/qYa 27LuXKCSS5moAPllcnitS67a8OrPe81gjIqJ9wOcdPBgG2QMbwo3c8Fs1Kxphg2zyzpfjhljb6bE +Sk5V+0nn1jAKic+H39sCWnQwNxzjyUsBjCcb76xWGbMlP32s/Yixkr58lYcBHPBiOFIakOX9edS 1h2PKvRc3/EYnxncUuYq1MqVK0HUzp8/n/856OnQoUPDhg3ZV/F54sSJ5cqVa9KkSUzsOzW3lEGE MV1qTa3CQo5SoTMBp1aJx+iiFyAWwURXBNao8cHQJNUwc2VRAcuhm8su3I8lfPzf58amXDlz+OEG 5yz7e67LxvkBUQtiUS7Sp/YTvxA2FxePwX2AnKUAUWLwVBxxRF6QswXZuPXWZqedzFZb2eB7GCty BsWf3JKG+ZwEcRL3/fc/oJ9M3dlcw46z5P7uG4gFjGkITEJnM+4j+sn8iXIWop8ZVxbrFzI4/cGh gmly1FFHfcI2wnAg2+6UU06RU8AXXnhh0aJFxx13nOJziliL0XXOcSCuHGA5BLCxxx7/6h/XfwYM sLdhkvpgnXDEgwkAPIWHmz5AUrhUEwNXip+lGIIw/5BD/gWVqVTJpkTETGTy/usvX+TgpArD9Vs/ BzKwVGAGcNobbrjh3nvvHTNmDJeTvY1U/fr1e/fufcYZZ2gNsJNHRYClWv0NcFUiaylGvbFV1b3d wd+gGGYk+vkvfwM3fbt1s6HxueYDKpXVvndvG3aW7AB5Rc5mN0eBUNE9AFFOxauS6Gc28X6yU5f8 vVUmC3wJhxGga/k/zkF1Bg8ezMVpnrps35L8cD6COmr1zaJ+ODAVx55ipPAonislFIdWSKbo56ab bbYJVgh2ycyZZsgQe9zDZ4LVH3OMvUjTsGESbRSZFEU/FQ/A0qCfrA5aFwhv6c7Mp8K45VRsxowZ /fr1u+aaa2Yybjc8XPkBF8JPWdg9SbYioug7Yd+CSeUaRWczboNZkmSnijNsAactPtVwxiyL0wuM 9++++053ZMKvf/jhF8wU0KckHsGVQvBZzBQiqRHejas1nK8k0JXiKREYI8JPKIa0o5+K46czfxLX TjdmX3Q1M0tl2bJlvXr16tat2/jx42fPnv3oo49KLUxV5A/iVKg0sCzilQIrUDFXWeqYR3TnUlY8 UTIWuAmYWQjXiMdPbs39uemmP3311R9cWzrjDNOzp71UDXKWg55Zs+z134Iw29yai/5t7sUA+lZs qaCcimNnSK5vxSGGs/GpYI4AT3n99debNm1688037wea/O8HwApQFcLXwrXoB5trMdEc0O2Hgzrd BCZa90rs/GaLF1ft1u2/hE4j+zDPkUfaiHWEna1fv8R3E1HA6WcixFRMJ0uJBDPwqRBNnzs+J554 Ys+ePU8//XQiknns45gTOMjixYsVW6/5UmisQK1XlK1Pb5NNtt9+e60oBwjkbj8E5kt5wm4XBBX6 WdQV5bBbD7d+4rn161e2WbNtHn54U457uGlN+h6Qs9zuTfJxTwrTyIONfiqGZKKcWq8oI0rgKYhP N2ZfNDYDS4XjTGInEOqNyTdF3QWBjJe7NLihwp0fC9QOtxXfrWCKJKKgYksFLC0ERqwzUTaHGa3Q kgaMcsIJ5n//MwsXri9TZj0RSLjpA5a2evUoeRtBW6Kfii0VlLPgghUBY6NpAksF8SkG7HtszMBS KSbBBzgDgEuKAeTRqF2hrQCY0o1YBIitO5fyqlWr8qg/oTaN55m4YTyhthJp5cRHAY8CKoULPgRw 3X77z6+99v8IO0tMki22iLQnkTTGeT0DUPEOE+Vkjx0JL/PQCHcRmF5Kw1FGBpZKpUqVatWq9fLL LxdECKLrJFUmuH5MAtTmQWVCaxJdVAw4hW0QqBjJgewUB/MW8Sm5ukUWHC4zNm1qbr55Y+rh5s3/ HDHi+8sv/13v+R36qUR8RczAevSzMAKZOZledC8QGZ/+kMjqyCOPfPbZZ++44w5wtYKp/vDDDx9+ +OFbb731008/5VcXozZwiwXHrGLfLOzCgak48huy0x3qQIl+kh2HPIqtWpnXXrNDeM89bcDZe+81 zZuX/emnTQiWr/RRHKtp4wrn5k8VqptZ5DfMkYEDB7744osgJ3AbYtDhaOEDduupp556xRVXkLgy JquOmshvXFFmqdMappZbdhz9oE5arTH86owOxSflcnKXbCgVyfrIMvz22xun9LZtLUKFiCmGYPN/ MQDBAWiFUqGcqKjiMLWIjyUp2fpZtKnBEkxEHMX6mQ1OhXfq1avH/eSuXbvuvffeJEPnvg/50A84 4AC+4alevXpMzBQVRuRGIiSIpCaKUmhRf/qj3rueYJQDyFnskq5dN5opu+9uZs+2eQc3mCk8EqNW cbgRSFM/ABXPn+r101ssMvCpwBSCpbK/Z3tB8mRB8WCacM+Na2Bxgx+r8amQylXxTVdmyaVLl9ao UUOr14GRAiaahFkqbU3mBIIXMAmAYEsYgaCAn33WnvgIHHiHHUynTuaqq2yiZ9+Dxwj9rFy5ss6b 2MYQQBnAaZ06dbR6bYlWyprFDJMw/Uyvu4BURD8V38TeeIqXHkNsKTDGgwYNIpQ+lsoOO+yAcvMA XuFz3MyU9ImKf0k2PYoBp+JgV0wgpCnekYv4kkfgvHmmdWsbGl/MFHI6T55sbrklxUyRycHpZ/wn yWJ6mEj9zITjuvXT40QGd38I7DZ58mRCqmTCRlc2Vw7gslJsCLId576YVhAAsmerqvhCnLhUeXLV 8sje//prc/XV9oLPk0/a9D0NGpgBAyxy9qSTCo3nJvqp1d8A15lbiDii+NQe5dTqr0V8wPsQn2L9 zMZSAXXFoI0sy4DifXZG03KFChUAA2X0SoIK45jFdal4pDGPQGCCJJJpVwmRWbFixUzfyk95AuGf eqoZOJAzD/Pf/9pMyJMm2ROfrbcuqj9oZtWqVZNkimXIWfSTaOOKr6ehn0yhGXIlMcURHPqp2BTL xlLZddddzzzzTC7+kIkwu1g6RDDjkvMNN9xASH6qmr8htlLKgy/rrbfeuuqqq0477bTmzZv37dv3 s88+85cBHzNx4kReJ6L/XXfdpTg7mlANqxWnuAPshpdOccQR1FWxG5LtxJo1awDixH1qX7jQNGtm Lrlk4yXkunXNqFFm2jSz997F9xwc1erVqxUnM2f+RD8VY07RT8XJzGX+VKyf2VgqMAVgINe9brvt NjIqk0455Zk2bVox0VR5/ZZbbsHCmDt3LredFyxYUNDcgeO3335769atP/roIy4848J57rnnSNrs dZf6L7nkEuoRGO/QoUPbt28PZiruE2UO/eOWneLLI3LLLnlAh7QFiuwgMO3iySuIfsYt1/f335uv 1/zNybVrzYgRpk0b8+CD5uefTfnNzbXX2tD4hE5JI56bXCNQPABFPxU7sGOonwEOcmZO9kIJvnyX Pi8kE2M6D94Ukv7gWeE2MkBaPqQ8hx9+OP6PoqpiSOCMwUdClNvrr7+eS86YICmFx44dW7NmzR49 ejA7yE8E6V+0aJF8Riq9e/cGwDt8+HD5ZtKkSWDyb7rpJsyglKoA/zZs2LCY/qRDchzKAO0mIHQc ehJGH/CmEDyQwRZG5XGoE3McAuPQkzD6wJAEvrZkyZIwKs+uzk8+Wd+ixfomLdZ/uHDd+pfnrz/r TJu4h/vGxswzhz3b6i5BIKb5sM69//77bMrTLJ+4YvjD0E+GYeJ6nmaH0U+2smkWTlwx7qZ98MEH ivXTk0gGt5S5+/Pkk08W4yfEBXLyyScXdV2KJj3cFgYHRsmQIUM4wfGMKtx0bdu2xVmCb6bQOGB0 4KSTTsLEefDBBwVkym6gVatW3JPEZNljjz389pmaW8q4kTgs13pSjjpxjxdzUyuoFhXFDlOcTpm9 BOM6PpckH33CnNrImD9/uqf+HS3/b2SZFauZFlaY6mNN2xHmks5Dqt94mSlbJt2tHLtVCGRm05qu lj0hD7HFtUJVEJ+kQU1X5IkqJ/OnYv38Rxp5sSI5vuGGc4pPZcqUKUzoU6dOxQomEm737t1nzpzp 322Dcdltt9169uzp7zO3ptFCvDUFfSoHHXQQwUjyQmCAjcotuwArjFtVLAZx61KA/UF2ugmEuljp 5w+/rJ950WOPlDnqO7MpfpS/jJltGh9gXsar0u6S9d98nbFsdYuPpU43gXHTz4z1r6QXdIvPo74s Ry2ZGpG8DHdwGEr0RnZUmYZCB32ycOHCU045hfMjr3U8JU8//XT9+vVHjx793nvvceqBFcIH4uFK OqFXX3113rx5jRo12meffby32BBwd/rQQw/lrMdPCIVB5vIlfcMDj+HJr2zc6TDfyPohZ0b0X4Yr /4vXRz4XLMmL/CS/UozC2ZWkUck7mNJ6Sp3scugDniRcfPiQaN3rp7+kdDudOilJJV7JFAILrbNQ LlGSeoSEElnhsVdUxd86BEIavlmcRnxOn71FiSyFwGKEW3zJ9NnrV5gUQQh72dIByWTTI50RfhYU WQrtfvYK0wrVNOmnX3uLEq50Jk09L8heT9Z+/aEtOgB1uP24fVBw7BSjkwUJLHREpNSZoj9+itaj P/Tmo4+2GNy//gM37PzjR1uav9b8t1rPbfv3Xn/9ok126XTRX/16/l6xolXYogRRcETAdjk7kETx Kdrr8TOjaSSldW/CSV97M5qaipkc+Am0PpBM8RilTA4MyUInnJSBDO1FjdxCR4Q396aMsmKmpvTZ W3DkfvHFF9AIgcUzLZeZP525V1ovSn8KriZp1ol+ym5cFgv/0pY+ewsyrahFMGXmT59paZak/0Vd mM/YUmHmBWhCVkKeRx999M033ySRMjBbHPjp2yuFWiqPPfbYK6+8wpl3s2bN+vfvz7EOAsAK+fLL L0kqROWkRXzhhRc4APIf9KCI999//8EHH3wIadl9Dx3D7uF60UMPPYQNhP8GZcX7Atadi3noLjMs FgxN8D2fwYJAGgYB8oYijqJw57DA8CW2AgeBWGa4uOkMfzI1y8rqlaROvuRPTCK0hxepk77xupRE nzgSpgw/cSLA9MdPfOBFuuHViZy8krCUO+FAbegJY56S1MC0Iv52pk6a4xv+ZJ2ge7xI61In39M6 3cY4owOYfXzm4SeWBM7L+CwE8oE6PVbQE1hBP2GLDAOq4rSeF/le6oRptEjrfMOfMolTEqZhOFIn rwvTpCSf4Rtfwl4IkTopiThoF4lTvzCNYnTGY6+URGRSJy1CLP3nLIxiUicE0gr8hHb+5EY31g91 UpJqKekxTe5CUyeNUlKUwc80yKFOuo286CpcoqSw12MafOZPKIUV/EqddIDWRbgiCPrJTwiCzlAS 8umJaJqwV6ZOKcmLdBj2UiFECdPoNj8JgTSBTtIZYZrHCujle9FeSkqdNERJfoI0CKTzHoF0hiZ4 pE5EJgQKe3ld2IsgoMIbEZIwBX5SJ7/ST+iSOoW9lBQSvDohAb2lTmoWNfBEBu20iELSVWGa121K 8qeUFEF47BXahb20LuyldSjie4bZWvYVX3+9DXcJL73UPDjD/LjOlP/vBwc2G7p3z6X1D/i5zGZH NPxvr56f//orDN7INNFeWvd0siArZG9D6xSjOY+98AECmQ1ggjANUfp1Us6mIRDavQnHGxHUI4rN r2IiMDypStz4iJg6PaZ5Okmd3uRA6wiC/2USk7HjjUe0F6nJeExhmrAX3srUhMhkjMsZEOxlTpDW 4TMEUgN/UgmaRp2iaVBEt0UQlET0aBr95FfqhByqFQJFuDQqw9MbyPxKSfQcomCL9FMmRk97ES6V U6fMqKKTlORP0TTqhHY6LHOvx16hndb5lbfgEsRSM2UoKTopTJNBJ6xA0N4kJhMjDUmdwl6ZxPiT YjRBP+kMtcHPgiIrOIl5I0Jmfl6BQJn5hWl+Voiee6OM1mlLZn6ES1dlEoO9sEImdvpME3RGFiyv TmEaf/ITkhKR0Tp/UoNMOAhXZmm5J+WfHEQrZLtFeVEtWfXgD31GiNIZYQVdEvZ6miaskMN9eVEm MRGusBdWSD9RuaJOITPAqdAS4h85ciQHNHRIRCvOGQ5lOnfufMIJJ6SJNuAEh3tDKTiV6667jizN IFe4hIwOidWBvcI9IFrk2hHfA8jl3RYtWng2CRYJvplrr72WxEN+S4VrQWPGjOGiENECZBOw++67 85kPVA53mHpkoof18I5v+AmpIAz+FPsUhjIHyTIjIbz4CXmLwCCWP1l6Ya5YAHIJAvlRDz/xLiVp gpJoknSDSnhF7pXxvSgQL0pJqpLWKcn4p04sFb4nEyR1Ukwu9NI6D8ohJWmdHgoMWer0SvIW31BS dsAShUzO1IRAWqfOQllBzdIZAcpInbLi8lCnuIX4SbotrPCYJv2kJM1BCM0Je73WUVAq4SIYIQH4 TD2MT2GvnxV+QfjZS530UEpKncJePjBo+exnRYpw+ZMWEbpfEB7TqBMheuwVkJCfvfRTsqXwE8wp ShBi3jFWQaCnaJonMo+91CnC9bPX67boTwp76SSF5XIKXKIzogay9RGjjWqFFbQoJf11emogei7s lTq9EUGjwk9+pRK64TENgXJWS0lQ9p4gZOx4o0zGjowI8VTzWVKcivZKt+UKmIwdv/amsJcyUpLv aQIL1yZInDdv87vu+s+sWTaYG8/xR/5+/gU9Xjll0uPl1q39ed0vZQ855L+TJ/+y7bbwwy4zPGL9 F88KKKJjn3zyCT5dtg3006PdY68wzU9g8XX6Ry4vytiRUAu0hfYKgR7TPFZQ0j81+Scx6hQjo1D2 isiKqlOWFi5aUglNwBO5qiYKIxdnZG2WeRL9ocPCCqlTSnojFwmmTE3UJgR6A5nCshnwC8I/MaYM eT97/UwT7ZW5F9HyZwp7+Yl1FN1mhhHthUCZ+YVpQhE/8TllEqNCr04/e2Ugy+yXwgrpp4jMm5r8 qwlt8Sc/yUBOYa9/GinIXqmTpmlFZgNol10oKwWPLAQUk6ShMol5eu5XA1mwhED/LI3+pLBXCKRO /xoh/ZSS/vncE4QMZLHhZBH0FlaYJgrjZy8lhZ9ChX8d/+ezmBrpPKjXsGHD8GcceeSRXN7B1ADH ijVACmXuBB133HHPP/+8LF0lPoXiVMh9CF/69evnf52SnAeB5OXL6dOnYxLRor/Aa6+9hiHm3Qby fuLuDzgVLLUSOxPzAqiaDBiVDzrNXJmm2iSRA8gOApPY8zT7jMGRz6tbZHS/6671tWrJ7Z71tWuv v+by31Yu7zl0/ZZb2y8OO2x9+fL2Q8uW61euTJOmf4oxd4vLJOM3E/ICiyVb3oR0Nptu5lk/s+ly Bu8wc4qbOYN3klk0g2j6uG447iEeJdYDT7t27dq0adOhQwf8HARqw+EzZ86cXOKwYddjBqYcIYkv SCw4Yn3yISV6yscff8xPhd6tQCIKQlkUc3RXuO2ZqG+RkdZLByIH2fckSiYZdBbxsUNKGbMZvJ9j 0ccfN6edZk98li+3sfAJjT9y+I+977h1cs1eXc26n+wvU6eaXr1wFJkpU2zK5JUrM2tS3FFF7vMy qyyOpeU0QSZYlY8cf6skTYiS42/FBG6cSNOnED82VsKxxx5L3BT/KQ+OHWLOgnLlIEaOx0p85HU5 AvceqsVlAgjGH7GUowGKcVGIYrvssgumjL8Am7kJEybwlh9jW2LrySogx73J6nP6vWVPgN9LnJAq H2x3CFRJmhDFtMABc9QEYppcfLE5/3zOfQwQWTIh9+xpMFxOOvXpp8recr35/Q9z4YXm1ltN9eo2 Mu0ddzDb2Ji0w4aBl8+gs+xWEZ/kjVf5iH4KLl7lg34mIIZytqzH56c7hrLHmAx8KvgJGbEcSBcE o2CskPadCav4JYcVlzBuGB+oDmYgdg8gDM655aQQHAn3egDVjhs3DrwS54ucLnEzmUMcjvkpAFYD Rw6BmICqAPHj9REjRgCzBYGLEZOtrOP+HpOI4h0P3Jejn7iLIdv+ITvFy4CIL1ICMWqnTzedOpm7 7zaSLZWUyA89ZG680VSpwl8H7m3atjVXXGH69zeSL2uTTUznzqZ3b5symbIbdkkZPHLDMYMXElXU 6WeixFVIZ3XPn/8QnP6hFTFqAalgJRREFWCYX3zxxVwJxgoppsL77ruPELT16tUjzizeEYwePuMO ARMkb/HhvPPOw+gB+IKBwgdS//jjzHKa06VLFwyXfffd94ADDqC2Cy+8EEh2wUbVxKi11xXWrk1f TMkqKfcCBLOs8gEE4Km3PgJZ59jSRYcGe+ed9VdeyY2RjaiUPfZYP3Dg+sICHBcaoyeL03y2XohP MdIILzgDUDHQQe5g6ht6QhHnD+gnWBytBHp0ZXD3B46AR8GtAjAFk0XuMmHyMJhfeumlG2+8keix RGwrJnMs7hBuDuOSkbNDPFeMEEwWzBEvxiXXlgiFgk+FLmLKcP0Ys8ZvSWIV0ZzM/pgyFJBoKymP mhi1cImz5LxBAULecSBECFQMBRCXmOJk0XJfIM1Lfzlp0/jxZsAA88EHtpKttrJ+knbtzL8jU+dU f2Evo58S5kTrAHT6GbjORFmhzJ8SCCPKdqNvKwNLBfONMLL4Krjre/zxx3NtWKLNkDbi8ccf5zjw 6quv5lKxxBLI+6PGUpFr69617bwzNtgOMFFim3IFVOtazj09jPsUaztYHuaxNiZKgaYVulsIrGNv vWXPch591Ahg67DDLFb27LMtijbkh2UA/eS+NwfcITeVn+pRTlS0QoUKWmGnzJ+s4vHJ9hCsmJk/ ucuiWD89dmVgiLFekgn5nHPO4bSFW8EEUOnUqRMBS+666y5wJ3xPKJSYmCnBakN+a8OzJ+ErVD5Y uhLZSSV1EMXBlsRH1vpwvBUi4hszqG9f07ixvcODmVKhgunTxxA35ZxzIjBTEJlY0hI0ReUj+qkY iBOufuZbJ9BPxKf4RkI2lgrvEJgF64Qjno4dO3Lf54gjjiBibPv27fkGkwXDPN+CU9i+YrSpSMsR qFBrcycJ4/Xhhy0C9vrridhv7RLsFdwq111HTILcq0+zBjkmT7NwQoupJzChckmz26VEfBmc/gjj bJTHDaHc+SCRjLlFLOHzPORKmiwOtZg7/QmVvUFVrv70Bww4yCp3+pOZwrz9tpk40QwevDHmLNnB OnY0RKauWTOzenIuLac/7NAk7L2+x53+JFqm7vSncPFxc3jUqFGPPPIIZgpDlyhwEnibVIKErAVi nWipx7Pzus8gOUIG4hAFHjNP0sWODxfDkSe6pFlJSsBCHlgvCOzBJWQOdwYNsmYKWTVatTL33Weu uip6MwWiQG8gPsWH2kzgEKgYj4l+agX5oZ8yf6ZEJgtsMMapogxwKmwNCXBCCh4ZwB4VuFI47Bw7 duzcuXP9QdviRGaC+yK52RJMQLFdZ08gyaK1EigZ0bRSh+cZKD1PMAQuWGCOO860b09KZFshuVpw q4wcafbbL5j6M6+Fy4mIT3fkNwiMNCJO5lLI5Q1JiplLDXF+VyK/KdZPj/kZWCqEaOOOD+FPyETo v6nBhqNx48ZcBXrmmWd0gwfzorKs4ooBpyx1kjAsL7yNoFHJhRlBQ/lqwstzllMHyGDXvbu9dfzc c+bHH025cva454UXzAUXkFQzp5pzexn9lMSKuVUT37dFPxVjHYLRz7gKEMFxvqzY0MzGUpE0zURS KehMw8NWt25dwr7lkvcnrsqQ536pvysPgbrzqmi9/ykDA+pyJRCLhND4BJGVWCkNG5oHHzSjRpm6 dfM89jY0z65M8eGI5PWNA59D6kMA+hlSzwKqVvf8mY2lApgA9wk3EgvugPGRenFUA+K/q2YjBwAD YQhqZQfDjPA8inEAmPUQqFV80EVy0ELzg6ZF8rJl9tbxGWeYe+6xqJRq1Ww6wZkz7RlQPB7MlKpV q5KVPh7dCb4XW2+9NfqpGCiGciq+lIrgdOtnNpYKEWN33XXX5557jtQ8BPmQdBj8D4qCL9944w3c KoqxS8FPEunVqP6epGLPMxIuDeLLUoJcQiZ6G/l6BEZARkHsFf7EXonTwyyXJYFxoqKovnjRypPQ 2Wz6qH4AKj4698s7A5wKlsppp51GGpprrrmmV69eQGgJWTt69Oibbrqpd+/enOY2adIEB0A22uTe KZoDwMGwC7VyiBNWrowpBmIDdtN9Jw7Ed8aIRTIhA0MhE/Krr1rFrl/fhncjzfExx8RNz9mJIT7F oRdFPxUDHVBOxehJYEa69TMbnwouerIWE+eNU9vZs2f369fvuuuuu+222x577LENO6ILXYzaMOZZ 3Vs6OKabQLZ0ujc9mSXj/eUXQ/oewuGPGWPWrLFoWS4hM4EQz22zzcIYPrnXqTtXrXr9jDrXd+4K l2ENuudPjxkZR37DBie58cKFC8kRiLlKxhYOfYDZ1q9fnyPPDJkcYnE1kd8wmRXH5GBPwCVJslpq jazF2SiZccj+HaKu569q1jmcrKAyOSwvuRevvGKGDzf332/kKs1ee5mePc0JJ9igKXF98Pahn7iK g4wZEydiRT/xl2uFqnALhK21VqyY3KLXjWWU4ZKxpRKnUVZcX9RYKpjMrARab8fIKbJiAsWhovjy SFoELl1qHnnE3kMWSAqR4tq2tXeS8xcoJf15THIpKx6ASFAxgWnpZ/raEL+SuvUzm9OfFBlxIfm1 11576KGHnnzySfwrik8686ucXLZSfEzOPIJnTnG8CsI5ZAzjyK/CZdI6Viab8hIiE778skWldO68 0Uw5+WTrVhk6NBFmCpqJ+BRHxCEaB+EnFB9Qqs9QiH4qjpyZrqXCTESUlHvvvffjjz/2z2CSTvnK K6+87LLLLr/88m7duj3xxBN4ojKZ5VzZtDjASFMcglAsFcWaw0qg2FJBgzk7KNJSAQlOfkFC4z/1 lNX17bYzt95qE/qcckpaqh+DQlgqQIZ1Wyrop2JLBf0MMdd3vlVU8v4wyeS7I6G3X8LdH+agMWPG jBs3zg+fhi8TJkzg7g8r6EEHHQRC5f333x8wYAC3lxVrfOiiKLoBrZ7njQeQpMlV/egWX+GiIzgK jpNTT7WXerjpAxLlzDPN/Pnmf/8zlSolSNqKzyU9KZRG/UyQCpbU1dKgovCgBEsFOBL2B5Hy9957 b49j7733Hoc+QCAvvfTSIUOGgAi55JJL1qxZwyUgxecUJSlMWL9vtdVWigOjcUAOEFtxlExCh8UK aR64mhIVLTUw2qJF5qabbPoeTBMeMiFPmGDzDu6xR+Cth12h6Kc/eUjYLUZcP3MLQbAUGysoJ1No xFyNrDkEh/gU66fHyRIsFY4wyZ+82267ecLGofLoo49yIeW4444788wzwfxzr+Gcc85p0KABwd8U 31yPTPlSGiLGovoYtYpzgTKPpHUvJl/qlVu7TJQ77LDDPzFqyYQ8erQ56ywbeRaPNGHar7jCxpxt 1gxQcW5N5edtbsRUq1ZNcUBL0U/FWwX0U3GUL9FPxaZYupaKdzXDe+GDDz4AQov4/XHeUHfuKnNf UfGBbn5mSgMMUXPkN4lcpDjyG15GxZHfmB/WbEj2bUfHG29Y5OxFF5n33rN/nniidaUMGmR22y1f Yyf3dtFPpjXFQDH1kd9QT/bbuWtCPGsAp4J+OpwKOU3LYXG/9dZb4ixB6tOmTVu5cuXhhx/esGFD z2fIhMViU0pSJUWssix1ihdyNIcIvIrv/iA7xYA+U6bMz3/++cvXX9v8gjhOiOoGQoVMyNdcYyZP Nq1bUyDi8RJscwDvEJ9ixDf6yQBUnC4AU0wxJgH9RHyKF4h0fSo1a9YEM/v666/ffPPNgwYN6tGj B9FpcaY1btzYfzjNLally5YRv0uxGz/YGTD92hSHOhAm6DZwdeeqZYUr98orVZo0MT16GIKmcMRz xBHm8cctkDZRyNlixiMOdsUwDt36iViZPxVHM4JA9FM3gTI2Szg8JgRtu3bt9txzz7lz5w4bNmzO nDl8c8UVVxx44IH+sc1NZkKqEKlWayTH9A2LwEtut912iiGZmCmVKlVSjAjjYBQCA9eKWFS4ZMkm 3btX6Nx5iw8/NCBU6tSxBsrcueaggyxCRcXDMoD4FOdShjQIVIxTYV/NFKpCGQshQuZPh1PBd1tm r7326t69OxFTgM1yx6dv377NmzdPgZgBXkEbjj76aMVrar50nVVc8TyCgnH7QPGeANIUXt0icpLg ZDn0+fxzOzSaNjXTpplu3Wz8WUUP+omfWLF+Mrcwwyh2GmFrak0UIB4jxKdYP725JK1o+vh4QRJw xIPIGbcF1ZroOhwHYr3GJ3uLmmj6pHWAq1rh6yAAli9fTtqR+GhOsOssQwNM9E477RRstfmsbcUK a6BMmmTWraMbP9eqte7mmysASdl883z2Kpy2mfS4/MgFAhB74bSQ51oBIAI4rVWrlla/JuLDGuOC TJ4ZHU7zIFSYP3GrqD/NSOvqIKaJhIVgOSnU+uZISPFiE46OpVsrNqLueHq6CUR2evDCHPGAmSXC 7KhR1kzZdNP1nTt/PWbM90Sh1WimyBDFmFY8AFXpZ2FzKqNPzwAsgkDF+ulRnJalku6i6sqFwAF3 +hMCU6OrEjekktOft9+2cWYvvti8/75l3z77mIce4hLyJvvvv8V330XH0GhbktMfxcevkFaomzxa NofYGtQpGYCFMUm9fjpLJcSxEWzVePZwWQVbZ3xqY6LkfpniK2N4IiEwPgzPpickQCYsykknmTlz zK+/mipVbDafF1/EuYKvtcq226qFDBvDPgHxKYbfcWpQo0YNxaYYysnhXTZqn4R32AghPsWRCZ2l kgQ13NBHclYrDuyD3xIkh2L3LEAHCEyMthXs6AMPmHbtTNeu5ssv7Y+4VQiUQgja//xHyhLOARVN MIHFdh3NRHyKc9USqxMCFR8f6NZPmT8V66ezVBIztZIkUnfkIsIJKo6shZUJgYnRNn9HQc726mXO PddePObZcUdroNxzjzn+eK8UWHsmymSbYsXKhhig6nMpQ6BiS6W4XN+JHJb/6rTkUnaWyr+YwpJJ CLhCM/uw8yBtISFVYFzypR8vChRfIBRG6w5th/iSd4fwr7/MjBnm5JNN9+4ASm08t5YtzSOP2EOf v10p3iDRncpVqFM8BhOpn5nM0LrFByfUE7hxmUhf6B9++OG11177zjvvFHwFm27SpEkDBw5UnGEh fUYFW5IzSK03eGWYkX9R8TE5aL6EXSAk1CxXjjnx+eADq8n165tx48zYsfZDYQ8YDsUwDqxMxKf1 Bi/yRD8ZgMkzptOeZJk/FcM4EBziU6yf2Zz+cAZByPxCTyJkW/zSSy/hd0lbhVzBtDgAnFbxSMNG Ae+meKQRPvKfVMNpCTx/hf7v/6xF0qiRmTIF+ImpUMGcd56ZN8+0bWu22qrQbjHq0U/FiG+JUas4 BigxahmAii0VQpJqjYXDkJQYtYq3shlYKhxFf/XVV4SXWbNmDZ851OSz//nss8+eeeYZshjqDjaa rwVEdy5ljgt151KWXLX5Up4M2n3hBXPBBfYfofF5Dj7YZkKeONFUrlxMJTIhJBWIkwZ3ONdevXq1 YqAYaGj0U/GpvculnIaaJ6BIyTFqiYJ36aWXvv3226DEOdzBRE3ZYTBbARvk17POOut///tfTDZY amLUYhTCcK0X7cDSLl68mBCZWretDBlM/F133TW+kwEx3G67zYwebVautJ0ElTJwoL3jU7t2iX1m 7INOw7NSh6Q/Gh/OtdHPKlWqaM0dw0aItbxu3bpa/ZpLlizBMZb4SAFFDC5WZ9HPmCy74c0BJUd+ Yxri9AEvk4AJ5IP3oASkUN5nn306dux40UUXKfazhSeD4mtWD5hS7HlGsnFHLD73nGnc2Nx880Yz 5dRTbSbkK69Mx0wRvVWfq9YhvvM19QXSrm7xyQBUjPj2dKBknwrbJu774DJ58cUXr7vuup49ex5z zDF+HZIUUOyJi4q1H4jCZVqJGp8K7lnYq/UkkuuRBDwAkqkVVMumnLETRwuezIL4TsaMMYItq1HD XHaZDUG7zTYZjTXEx0SpFVTLsQgEMrlpDU6IfuIRBzWsdcOA+CBNK9QP/fzhhx8AG2nVT28uSsun UqFCBTI87bbbbieffPLuu+/OZ/8DoocCDObSYNllNIkHUrg0RNNXrDlYYHEM5n3ffTZ9D5YKZsqW W5qzzzbPPGMzIWdopqDhUKf14EBcYrqj6bOK646mj37qzqXMJlbrNs+/gJZsqXil69evf+utt+65 557+9zmG//jjjwHVKo6jGojBkXUlwJkV36gCsUiyaMWRi9jSQWDW0g/+xbfesr4T7iGTx4dn331t usH77zc775xFWzhcv/zyS1Q0i3cT8Qo4KpLxKg7CK/qpOEg0+glQLBHKlkUn0c+VK1cC28/i3WS9 koGlgi3y9IZHKGSSWrhw4U033dRlwzN06FB0IlnEJ6K38JknEV3NrpOK42MKQ+JCICl77r7bkPd4 2DBGL5mQrcnCheQ2bbITnEddXAjMhYyi39VNXYz0MzTxufkzHNZGWmsGlgp7izFjxrwvmVSN4Xhs 7NixTz75JO41TssmT548Y8YMxZvjSMXia6w0IBbzxdto2o0FAmDRInPCCebyy80nn1iqjz7aPPWU GTzY5HwpyelnNFoUUitxR3znTLbTz5xZGIsKMrBUuM9G5LcdSf+x4Xn33Xdfe+21I444om/fvv36 9WvQoMG8efMKjbUfC0IT2wlgQHHEYwbET7lAqBgORgTJPN+QxPVNvp4jjjDz59vQ+NWrm2uvNeQd POooeyE5t4d1jqt/PLlVE9+32YbVrl0bIca3i7n1DCwt+qkYycENXt25vgnxoBXP7lftDKYqjsRw mciiwnWGZ599lg/NmjUjVgQQloMPPnjRokWKD3RzmxCyfxt/lW7/M2fkit2zkJZPEACXkM86y9x4 o82ETJQB7BWwtP36me23z14j//0m+plPAoMio4h6GHrMe4oHoG7xIVWUU7F+Mr3o1k9vXGZgqbCz Jy442BQAdPPnz3/iiSfq1at3wAEHiHMblim+wRHyfFhc9eoRtSDCiF+URw6H2jSIRQgMtYnCKwfG Cwzl9NMNwWd5cHuMHGmeeMIceWSAnVGPqGWRU4+oRT8Vr+W6EbUIziFqUyc04hgefvjh06dPv/LK K3v37g2gulGjRpLTBMwKFgzOFcVu0gDn94yqUm//6SYwP4H7CITfvLlFzv7wg1W2jh3N9OmmQwd7 ITnoJz8EBk1FMfXpJlA3dYjVERjhWAmxqQx8KsSTPv/88zFWCN9LBIV27dqdeOKJssy88cYbWHZE hFMf0zdEURRRNdfl4xiQIyBGoD+ELYoF5jQgilKqYaRAYDh1F1brZ5+ZCy80l1xiXn7Z/tyggb3d c+ed5vDDQ+oD+qk1E4KscwQNUwzjgDT0U/FuQUKShqT8ea+WmRPxlYZ4KiXHqPULA2cvsT0+//xz 0Coglbxobx999BFprvbaa6+KFSvmXXjSATUxavHvKYavC4yD6VLrXAnEAShAFLHRiOE2d64NhP/1 13YAlC9vWrY0t9xidtgh1CHJMTmy07qWi36yEmg1pgUGp3gAysGWbv1EOdUbKxn4VGSHgdeEYLUk JIM7HtAMRO3RRx8dHzMl1Kk54sq/++47xYF9mChJkMZqFzFXI2uOKERRpBp+/nnTtq2N5yZmyrHH mnvvNSNGhG2msJCjnzyR8TPihljnAIopDmsp+qkYMsx1VMWRM5k/gWFwwSXicRF9c5lZKvSPVfOl l16aNGnSnXfe+Rw3CzY8ktFRsUJELxivRTLOK1ZEljowp4qTznNdDgJD1J+1a83QoaZpUzN7tm2l WjXTvbt59FHTqFGIjfqqZkJQbElLXirFiG/RT8WWCsrJFBrNWIi+FQQHSFTxTs9jaWaWCkc8gwYN uvrqq/v06TN8+PAHiMqw4SGm/m233TZr1izFQzp6LXQtKuBAuKdas2aZM880V1yx0ZVCKh+Qs5z4 bL65AtbFh4RwhZhXOhWTlle+Rte4esiwsDIDSwU/IYFouftDqJk2bdrsvPPOnl0C6IzN8fPPP499 F52ISkdLnKkpvlHF8SqAJ8WQYfBuEBi8qn7xhU0o2L69Eb/m7rub0aPNxInmkEOCb6voGpkluf0n FwBVPuAbqlatGikmOlo+MnWjn4pRDignCXSjZWp0rcn8qRjSno1PZfny5ST9OeiggwYMGNC5c2eC qXi1ALDlivKSJUsU+4Gj075/twQYUyscDEJZ6jBTFG/sgs+lzJn0nDk2E/LttxuOfrbayl5IJsXg BReEjUopdAign1HghfM0/EQ/tcJpYSr6ifgUD0Dd8yeaiX4qNjSzsVQIoUM0fa4i16hRI2Xo8icB fTkDcqc/gc+oLvJb4CyNskKiNgcZ+e3TTzfGc1u40FKx//6mf38zbZrZa68oifLakshvilOTqs9V qz6XMvNnFJD2vAy/DRF4SYVdGhwEGZz+AN7hKdQRyvfMyFh2im3zPKmizcSrGO8GV6FOdzT9wMR3 xx2mRQszZoxVRZAo2CgPPWQNl7w+6vUTuLfTz7yqWE6N685Ggmbq1s9sfCqc9nEkRizago4Tbv3w ffXq1UvDgVlO4ybzlxUHU5HTH8Wu9cAIfOklewn5qqvMW29ZDSJGPlhacCrc9Mn3o1s/4S4E6t6A 6R6AuvUTzSwNRz92GKY/0QGkbdiw4eOPPw6uljvJcnsW1xM2CveA+P+QQw5xMWrT52eaJUlUqziX MsOMVK6Kg0jmmkuZG87gUUCiTJpkFQZw2N13G4Llg1OJwcNECeA0FMhwDKjb4LqyuZQV56plbtGd Sxn9VJxLWXLRK9bPbHwq6PR5552H44QLyVdcccWbb7759ttvX3zxxR06dLj33nv322+/Fi1aKAbJ 52vmxBxUnD8M7yV3ygI7H8mXkIpuF9llGQ7nr7/Ma6/ZsCj4TlavNv/9rznvPDNzprnoIrPddvEh FOqIyRGf/gTbEzQT/VQc7wcgDgQqPt7SrZ8yfypeINK1VAiTj1Eyb9488WPvscceN9xwQ+vWrTHi eNgvEiCPa7StWrXq1q3bTjvtpNtNGuwkmGZtxFgEA5Rm4cQVYw0A8qYYiI3rMRvA6eLF5rrrzNFH b8yEfOCBFp7CJeQ994yViJkov/nmG6D0sepVgJ1hDSCIlOLQYZDGAFRsiqGfumMoM71kuRcKcJyE X1UJpz9wYfbs2Z988on0hDO/Bg0aXHPNNePGjRu54Rk1atT48eOvu+46QuyH39tS2oLiHY96iWYj O6K3nX22PfT55RdDKIiuXS0q5ZxzYsurbGiMLTGFdUwxgYpJ8yRZGmhM1HjKprMZ4FSkerwmoAqq VauGycJDVkIB0jpvSjbsT+MdYtXojleBOinG9HGQnAEKZ9EiGxcf8Ozrr1vVOOkke9zTr18ckLNF qSrUZUBgGgofqyJMa0xuigMaiX4qnr2ZPxUHlhT9LA2g2owtlVjNI6WhMy5GbaKlLDFASyaB4M6j RpkmTcyMGYY0JSBn+/a1xz1HHmk226zk1/NUgokS/VScmpRNApBMhJgnBofeLIf46mPUKtZPDE3E VxrgoSVbKrjOOMj8OI2HGLWlIVVS6JPHvxtQn0uZg2TFasMRMgSWoDPvvms6dDCXXGI+/NBssYU5 8UQzdqzFqVSuHLGyZdockwM4Kt04AOKGKcYBgMdEPxXjVFBOxalzJRe9Yv30ZqQyxZ/hkS353HPP xWRLx8HL5gPkSp06dTKd78IoP3jw4Ckbnrp164ZRf2R1ksQA/mtNrYKNgoHLRTutkXhYyEGd77LL LoUrDEbMiBFm8GCSfNoCpO8h3WC7dklJMcjsQdxqPCtc5Y1sRETZENea0E+2rVrjL4CGZqnbcccd tR4xL126VEIhRKk2kbXFXQTRT8WRLISZJftUmIbwEHIlvcSH1VTxgW5kypfSEIuBbkSYeuqKJHDu XNOmjene3ZopZcuaiy+2mZAvvDApZoooamnQT8UqWhrEl6+pO5p21UtQ2FiyT4UYKl26dGkLyq+k B1wk95Zjgo5U41PBdcl2R+tJJN5LvA5sCLRu6fCuk5Uj1SW2bJkZNsyMH2/kYOjQQ2382dNOizMk pajRj/jYzGh1OXBLGQKZ1tJxKpc0Qcbxd24p82y33XZaUZmIjyVJq8uB+ROvmGL99MZMWj4VlklU ucQHbYiJmRLHKSHbPqGFWk9GYAnzI3ql2BXHCgeB/wj/99/N5MnmuOPMgAHWTNl2W3sbGVfKWWcl 0UyBLkb9tlCh9EE/ySLC/RGl9JGKeyvFZoroJ1OoVvGp188MLBWtMk4KXYS0YVuQlN5m2k9wKitW rFAc+e2HH36AwI1seecdG2G2fXvz2Wf2uIebPtgoV19tqlbNlG8xKY/n+fPPPyc2Wkz6E3g30E+A YiQcDrzmmFSIyxb9VAxpRz+5ERITbgfeDfX6ma6lIumdnKckcA1Lv0J0UTEyHz5gpiiOpv+nMb9u solZs8aMHGmT9XDi88cfhjCJREmZNs2ccEL6mhDPkuin4nUOU4yLFYoHIKQp3icwZNTrJ6BvxfNn upYKWQkvvPDCffbZJ56zZGnoFSAAxXGZkKBuO7js5ptv8fLLFjnbqZNN30NwFOLPPvCAdaVsvrkC BVafDRsHu2IVVS8+9Ttt9FP3AiGTZAmI2uTOpGoQtUAy0UWtYRbZswLoA8yhE9D3zTd/9Onz57Rp W6xaZYfS3nuba6+1npXy5ZM7slJ6jn7yjVYoFbtV0U+tUCpcDvhUQCJqXe3QT4mrrmbE+Qlh/gSw rzuOudBbMqJWpYATRJTiG5JIQe0Vuz//NHPmmGbNNh00yJopmCZdulhXSsuWmswUzRLcMEeIfioe g6WBQMWHI+rFl+7pT4JWdK1d5RIaqEyt1HFMDh5T20n58uWmRw/TvLmZN+8vgDjEcyPmLJd9dt5Z mRyZKIkbVnIQ3sSSzS1lIJlsWxNLQQkdJ087A1AxEAf9VHwjQXJ9i19T9+N8KnGXL5OI4i0d3FdF IFPGuHH2fKd3b/Prr6ZOnZ+6dVs2YcJ6LiGDq9X4ID7F65w2/Syggcwt6sWnnkDdC4Q7/UnGusER slaQCgLgCJn0b0pAKm++aTp2tBl8PvjA6tbpp5v77y/Tv/9WtWuXSYauZdxLxId+ag1LKPpJhG6t YQkhENIYgFpBKhCIcmoFUXnzp2L9zOb0B2TZokWL8BYWnM8wWkn/gZ+tNBh3GU/nub1AXCbdkYsq V66ceFOM47n+/e2lnnvvtdLecUd73EMm5IMO+u/69ZX9kd9yU4YYvk343QBz1cLIgsEv/vrLENR3 /fo8UK8+Vy1mCgNQK14YjUE5/xV6MQ9KFGKTop+KTbFsLJX333//qquuevvttwsynpADo0aNuu22 2xSfWIeobsVWTS7QQq3DfPUn2HYBu5HAL9kBOR56yEaYJfXxp5/aS8jExecbwrttuODzy88/Q2Cw TItPbexMGPJB4QB+/tnCe0491SxY8C8SiUFDpoExYwwmS8QPezDihinGAbD/RD8Vn4+A89OdS1m3 fmZjqRCo8YMPPigU3SnxBp599lnFOhHxFOk1x1RCbJ98tR52u1gq2GFJnSiXLDG33GKPe55+2jLq 4IOtK6VvX7Pnnh7fAAsrNjQhE/0MCnD6ySeGpI2vv24uu8y89tpGFk6YYEPPvPuuNV+4UBXxg34y 7yXbki6WZaKfim/HSGKjiNUmsuZk/gRXG1mL+WqoZJQf2ybQxeTOJqw7n7Hg+Ox/Fi9e/PLLL+Nr UXzYmS/x0C66qPtMLZEEMvc9+qi93YMT4OuvTeXKNrAbrhQivOFW8T3ITvEyIPoZFIEEmBw+3NSo YV591XTubE2TSZNsAJrvvjMnnmi6dctDZiQRn+IBqF4/1V8yD3AA5nGZK7HpkiO/sZ+47rrr8Kaw tyAFRvXq1VPypmKVY77wa5MmTXr06BGTQ0E1kd9gLIeRWk8iGWb44QDiJOmkHNOEbf6sWeb77+0A O+ooc/PN5phjCh1sHIxydhCTQVHidJBFAXGyBpik8Jln7NEZwJSaNQ35djBTOA/CgqldO4ve5foK 3j70EzCH1iSFop+Kk8uin2yhtUL91OunN4BL9qlQFGMFBy86jX0qn70Hxxp6ULt27datW1900UVa k2vnOuHl8L7iWRKucG7IIpekuz8c9LRoYdGymCm4UjjrAUVbhJkCgaxwAa7iOehRWK+in9yOCbD2 Y481d99tQT4kdsRMOfxwM2JEfswU0U82ZolHfBctHkhDPxWnC0A/eQLUz1hVxcypWz89bpfsU8E6 4dyHjcWrr756yy233HDDDYcddtg/728wV3m4KIXSx+cASI1PZfXq1YSCJvV8rEZIUJ3hhJVUrlWr Vk1AuGtCzQ4dakaNsuvnFluYxo2tK2WvvYpnBQMHTN+O3AbS+DA5rFq1inWuWrVqAdJ3330W/LNu na1y//0NUBUf8ifAdkquCofxypUrud+k1dwEsA8gumbNmklyapYst39KID6Wc2aYTF5KTFkcB6Kf Wp1GGfhUMD64B7Xrrrs2aNDg4IMP3nPPPfnsPbvssgtKwKaKvWN8zJTEKFoaHWUtTyrgNA3qWOpY DOKOAwDRPGOGNU1uu82aKUccYePiT55copkCA9TnqkU/gwWcgk3p2tWaKfXrG9aXN94wbduat95K Q5lCKIJmgmdXPABFP+M+AHOQLPqpGHCqXj8zsFS8onvttdfo0aP3Z4/jezjjBKRCJBXFgzmHYRLM q7pNwLhTt3ChufJKc845hg916ti4KSBnuTW71VZpSjfuBKZJRtHFgiIQgxD3Cbe8v/zSMvixx+yf tWoZIuqBVyYjdV4e9cnMgxJfXqTjGi0l4iv59MdTBbApL7zwAiH/jmBPuSF318cffzx27NhPP/0U z+GRRx7ZqlWr4mNAER3uww8/5DiD4yR8MI0aNarPvunvh53Zgw8++NFHH3msx/rZYYcdgL/4z4lx Vz7zzDPEoAOMudNOOx1zzDGUKaivak5/QALhvdQK6EOI6BVKFUeoCnhOfCe33mo++4xgpeaMM8z1 15sDDshocmTDyqZcsW8W8Umk2ozYUmjhDz+0fqvFi+1Nn5EjrVnI88QT5qKLzNKl1lYEERRxTgKm IAjkaFIrVAXlREVBcmiFqgSon7lreOA1yC1lxfrpcawst3XSZN+SJUt69eqFQh8OyM0YNGDAgAEz ZsxgkuKkEyOGCw6cDRW15DDm77zzTpp7+umnH3nkkVdeeYWzpN1J3vb3A2KXS0YPPPAAkBdMGQwa EAwMpJNOOsmLFoxUrr322mHDhnELCQuJwp988knDhg0LniJT/3vvvdesWbOkX7vAdQnP47iQp6k3 xRaTtCNYurGbKIlwyE3ZO+4w335r6tUzd95pr8lmDjeRO4Ra1zlki/iwVAKJ573ppswqplIlM3jw P5zeaSezyy7m88/NpZfmJ8Oj6KfiAYh+Ij6tW3PEx9yiFYXD/MkCoVg/vdUjrbs/UppTHoyVunXr yp/cWwZji3+lf//+d9xxx2677YYJUky0SsbD3nvvjS0yadKkjh07YkCkzG6yMzvqqKPGjx8/efLk e+65Z+rUqQMHDvRjLYcPHz579uwLL7zwoYcemjVrFlYLf1JhEItmTOsgBigXlWPauZy7xTxCrtp4 5VL+5hubX5DjB8KQsXiyQs6ebVq14iZuFuRiW0NgFi8m4hUmSiKccvgbSG/JOoDTili0f88xG2tt 1MiAsT3ppEAayawSHL1smRSHDhP9VHx2j34qjpwuub4V62c2lgqDFg+H3EhkacEu4c+zzjprvw0P JgvujWLWVOwSAq507tz5+OOPJyhLUdGisEs4zcFHIg/NecY+AejuvfdegL0YKIB8K1Wq1L59+0MO OWTmzJkcKmU2AyWnNJNIUJG14kl0jHIpk1rmySdNy5bmppvsHdmGDQ2B3IcMMT7PX6Y8dLlqM+LY lluacuUKeaNKlYyqCbIwi4HiAQhpis0U8fmpJ1AxIDobSwW7ARjKu+++i4nK2cpTTz218847c4Ij fvuMvPdFgbExSgjUs2DBgjfeeAMkSspWG0sIawnTxHPl4YNp164dcJlCsxFl2qsgp7fg6gKhotV1 CZOQOLZpLFzrhMYnd0/TptZYqVjRnvWIKyU3ZASyS8AF7BzUFf3UCqIS/SToouIBKPqp9egHCaKc is9eYzR/5jCHpPNqBqc/derU2Xfffe+//35CqvTu3Rt4LN4R8nDSDJgVbAUK5BhjB+OXwPwEkWvR ogX/X3HFFQu5cPH3A3iFj7W4DOB76tWrh7SK8u+JSZToeMO4jpIOtSlGEZkoa9Sokf+lDt8JmZC5 hMxBG+c+06bZOz5BbOTB0kJgOkMxiWUYeswAMgmofPAEE2tEMSBa9FOxKcb8yaNSOSEK/eSAQrF+ eoLL4O4PLqY333xzxIgRHLWwtICrvfjiiyXiE7kJb7311jPOOKNDhw7p7CB79uwJGGXIkCGnn366 1xUO20CccO2ZiLeYLLQ1ceJE4rWMHDmS8C0UmzBhQr9+/XgXO8Z7i2KnnHIK50FdCcLge0C0DBo0 iLtFSFFAVc2bNz/ggAPYvqO4tAWkBguGoLrYAdhA4HmZdjl4YtCCyMF5gyXOFIwRRkloxwjjyIlT T7w+1EYoNjZbvIjjB25ISWJ80QVOrKiHn/iGktQvJQX6REk+iNUFr/iT+okPJnXyjZSkn8wg9JPI WnyW5OzUz/ka/SQuIa1QUkJZyFIhiZmoAQKpkxNo/sQNhueJs3ZJX4K8JJET/0MgJakQiviVOnmE FXRGhjf00hn6TxPAEaCIFykGUZyPcvzHn8Qdkm7TGWEFTXNFi5/wwwl7EStUUJKapU5KEokHwqmH z5DDi/xEf/ys8OoU9kI7rIAoSgp7+QwhQhF/Uqec3fJZThJhhTCNkjREZ6w+lC1brVatX3799ad5 8ypOmbIFt0r++OO3qlW/btHil9atK+yzD2E7V69aJZaun70wEyqEvTANLvENMqKkLNsC3aAJmMav 9Bkzmh56mgYrUAO5sIamUZIaKAl7JZchJekqJFASKigJ6ygpTEMJIUcAYZQUkXl10iVK8hMtwgok K0wTTfOYBgkUEE3z9Jx+0hyCQGSUpE4ZERSAQBlb6I9or9TJr3CebtMx6uR//hQ9p58oEnXCEAik pNRJD6GOnhOxCuGKpnlMQ7iU5C3RXj7zriCZqJOSVA6jqER0Ej544fw9TWP65kUYK9ETqIHO8FkC qwvT6Cfdg7GU5EuYJsBSmEbTwgq0l9mDflIJpEnrlKS8DE8J60dJmhCd9DNNWCGjjIEskwN1SuvQ DoGQQKMMT0lPA3v5nq56TOOzoBD8IuMVXvQmMToJFXBJwogzjdCKDE9hmscKYa8MZBkRdJ7WIYc6 Kckr9FPYCyv4zEAWVsA3SdsrJSENemmOkh57PaZREpF504hMTQXZS7WUpFE6w4pLnXCGz3Sb1j09 h0CEKyWph9bhqsBrhL2QQz+9SYyfYCN/Ugk8gV6apjMwzSOQOmEpdUqYdW9ykAmHOr1JTNgr8zmC oCd0m35SlbBCREZzHnt5N2USE9ppi5I0RxPI2s9e6pTVBFnIGuGxV6YRb+anFVoXJDsdQ6tpDo5J Z2TBop+yRshaRklkRA9FEEIgL/LwpzeNCHup0xvIfOBP6kfVeV1US2inCSrxL5ei5yIIWQRpXWZp WE33oMhbLmmaOmnOYy+qVUwEwgwsFXpGvfTjs88+g1l4UDy3IeYC6n7QQQcVemG4oD1bqKUiJ6Ye zJY/wdX+73//AwrDpSF4nZGlMnTo0HHjxnXp0oUBIELF+4IGyAzLNxLvSELros1yFC3x6xADf8pS J4GtKCluUn4SwfMWKiUvSkmpk0ooST38JKuXV5JKpHVeEUnLi7yVUicl+ZXpjzpJAClLgpSUtZNu 04r0UyweXkmpU0pK617aerEj6Rv/S2c8Agtlhcx91CC0C6bEX1L03mOFXKiWOoUVwl4RgbBX6oR2 5jg6xh0uBi2anT57qZPOeOylKqGIhzqpXBYM6YzHtH8EwYHOZpttRa/Gjv2je/ctMBO5hNy8+V+9 e/+KlVy27OYb9JBKRBB+9vrr5Fc5uipY0mMag5PZgRi1HtOEFV6dolr0UygS4fIndRbFNHhbKHv9 /aQJWEExyOezaJrHNOoXpnk6SVuyYIjIvHBnUtLTH+r0tBfCKYl+8q44xgrWKSNCmObpD5+hkUkt hb0eK0Rkolr0R+ybFKaJTnrC9Wsa3eBFGREFR25ROikjAgJpWlhBJ2mXY2iWMeZ9r06vpMdeP4Ey jRTFCmndU5gU9hbUtBRBpIjMm8REYWQ3Qv2ivQWZ5mmaQDcoyYLBuo74+EwlvCJ1QhGs4LPoT1Hs FeH6R65MTdJPGTv+CSeFvf5JzK9anvam6Lk3S3s6KbL2JjGPdlqX4ckFUn6VHbXMvf6Z32Nvwfnc PzF687kwzWNvQU3zBnJRa4Solsx+HnuLmc9TJrEU9lIP2YJRTgwI/3xecI3ws1e6DW9lwvGEmxF7 veXSm89Tlks/K/wLqyiMTGKymgh7ZVMBFQUNBvuNSDTTh3oxWTAPMfRk9croISo/hg7Xdop/C6Ee d9xxJ5xwgph+06ZNw0eC/eF/C1ALJiH3llOqwqGC5cR+KKOOxbAw97Flj6XyQVmBH4muR/q88ML6 009nKrX/9tprPUq1YRMf+MNmCAIDrzYmFTK1cR+Qg+CY9CfwbqCZuJDFQajyYW4B5yd2ocoH/cRY UUkaRLFE6tZPT3AZ4FTE0sGZw1kPBzf4RW666SYOfTijkX1V4aZQDt9iveK8oWbPCY/BxcrtrxJF FN9dwXZEkDm0H4tXdWcohMVRJ0jjIKNfP4ucJdQs90wuucRGyj//fBNOGjO2C1pTxsjwwHkbbIbC WIy6vzvB7pMNa0o8hVj1MMfOoJ/s9Jgqc6wntq+jn4GEJYwngfgnSkmGwswsFQ6oCJ0CKOTuu+9+ +OGH582bR1TZvn37XnnllXPmzEnfLBAPD7OAJ/5Chwp+V1xbcleZkmBW8FMRxMVrCAcyeBe+B+ob T03KvVfMIzjucq8nnjUgUKzMiAB9TMePPmpjnf7vfzZg+yGHGCLxDB9uA7uF9uDnLD5wc2gtR1Ex Axn9VJxBXfRTjjBUPoKwiWgA5oODuvWTNVQQNvlgbaRtZmCpYB8QE5aIJozbc8899/rrr8enQiS3 xo0bc8hCvFpsiDRtcynmL8yUh+lDMDfvS8LqA5IFknP22WfLngZMUNu2bbnADGxFmER0OO4KEaYF YyVStkXYmByxRdhgpE0J+jWKyG+rV9sYbq1bmxdesK4UYrvdf7/xAbpDIhsfpPrIb2BxQuJe3quV yG8CpVT5SOQ3cVqrfFzkNx1izQBRC/IRgCoHt9xSJoC9uNQwLACRPP7447fffvuxxx7LT8X4uvG7 ENAWAxDLBpgh4W4xePGXcLsHxBO2DiYISBTcWVhFlGGC4DIRjXrxNliz8eg8+eSTmCaYkzhdCK/S p0+fgknn1eT9AQQgVyd0KFwKFawEALS5eR6ih/aXX8z06WbAAPPOO7b1Jk3MFVeYY46Jhp/gVLC2 /fmtomk3mlYY/ng92WYAO4umxYhbYSJCP7m1oTVSALecWMtJoKb1hAt4AMtHSmyLiLUovObY46Gf 7OG16qfHugx8KtgW4FGOPvpoAt5764q4f7knTKT81157TW7iFfUIjJmHiRuorADOeaQ8AWe5hEw0 OYAplDz11FPnzp179dVX+8OCcegIRIZiNEof8OuMGjWqoJkSnmZEXzPk+4/Jou9A2C3ieS4S7517 2x98YC680Jx3njVTiGty++1m6tTIzBS6j+wUu9YhEP30j9DcJRa3GhCf4gEo93rixvMA+1Ma9FP3 ABRlyMCnQgZjPBxcGybtToom4WjBsUEununTp2NqBKhnWVelxqcikUg8ey5rhsTzRTbleM4A4gQ/ 2L77zowda+66y2ZCLlvWtGljLrvM7LdfxHzw56CIuOkImkN8ciFcK5SKXRMEyrXqCPgZfRNyURbY foi7heip8rUo4VK06ieX7yAQPIZuc9Nu+dLXItghkWQKvsJ4xpsisQHSr9CVTIcDck0rnZJJLBMW dUTEx49y9dXWTDngADNunE18F7mZIhJRLD7WgLAkGA9tFgLj0ZeweqFbgrqpQycwViQOiu4nA8OC EGq77777Cy+8AIjViwQFd7Dp5s+f/9Zbb0lAWN38ip469bmUuVAWJKIW5Owtt9h8PXPmWOTs5Zfb 0PhYLbhV8vHgMYLAfLQcRZssAyC+FeeqxSUG4FQ3olYCnkahLvloA+UsHpOQj04F1qZE9fUvx4FV HbOKMrBUgIOcdtppxNUGHcLZyowZMzjuIY/xwIEDia2CNgA9UY/riV58Ency+nYjazEwArm/QIgU svb06GG+/toccYQNlAKQdscdI6OlYEPqdzwSWjqPHA67aYlsGXYr+aof0nTvyBGfbgIDmz/zpYLp tZuBpcJJLReSzz//fCy4MWPGcEWZmz78T5B7mMX94UaNGmk9zU2PmaGUUnxGDr/kCDmAQ8OPPjIk fmrZ0rz5ps0s2LOnRc4eeyyh6UORStqVcn6s9YxceMChsOJwDqKfikEAop9aQSrop9zhSHu8Jqyg ev305JHxKSxmCgc9HPdw+4s7w9xJ5goP2Qq5txyrGVkNolb2c1qnEm+3mj2BxLqYO9fcequ93QNM 6qSTbGA3HCrxeHSLDx5LcpnsxRcPMRXTC90Eik+FrYJWCYpDJYC9UFwVVbd+Zm+pyJscj5EIkWAD 7KjiGe5djaVCYkw8VVoDluOb5SCZQ8MsvXFvvGH69jWzZhkOIHbayXTrZkPQbrttfGYVUFwE19Ka d551Dv1kkdN67MtEh36yH4vVNixA9QaCw0Oc0+Av3wXYyxyqklziTj9zYGEsXk3r9AeL5PXXXx87 diyR2QCmAFVBrVFukCukgVbsW4uDiAispxgwxYaAqUQypmb2fP+9DY5C+p4HH7QvduhgP3B/Pk5m Cv3iAr9iQB8EsmPhyUx2ySktlrSXqTs5HU+3p6KfipEcKKfiGN8yfyrWT0+PS7ZUYATB1sjsQ8SU 2267DWDKZZddBpY2m9Ul3eHjypUiDmTsdsad+9RTpkUL60FZtsxeQr7nHjNsmNl773hyLWMC40lG ae2VevGpJ1C35uo+e03XUsH5iROFLIDs7IlO27Rp01133fXtt98m8v2CBQsUQ+Ljo9y4nbWGfYPJ DDNODzPwPHMJ+YYbzBlnmCeesJeQQdFy34cTn7jmkONUCwLjo06B94RQ0SFmQgi8uxlWCL6Bg9cs jyYzbCsvxSVfvWJjBeXUenKHwqCfiE+xfnqDogRE7YoVK0gTyHHPNddcc9hhh3HQg4uFVILjxo07 8cQTiVcb2zSqanAqpQGSmRbeDWTxvffamLMvvWTV99RTTefO5pRT8jK/p9+oBJ5Ki8D0K41TSfX6 CYGKF3Knn3EaTNn0pZQgaks4/SHqETmNjzjiiDPOOANUIHbJjjvu2KZNmz322IOcxoDpsmGteycT DhBZC4dWJm8kqWy6uZTffdemFTz/fGumkAyP2G6c+MTeTEES6nMpE7Rady5l9mm6I7/pzqWMfjKF JmlOzKSvzJ/oJ7D9TF5KZNkSLBWwnCyTtWvX9u8qcKaRe5OEhYqRnvERJloYZAjX+BC2oSds6bga U1zS+V9/tYHwzzzT3HknV85Ms2YWOdu9uylfPmakFN4dZAeBiehqdp1EPxVPlCBqmQAVD0DRT8Xn +Cin4nUKhwriU6yf3qRUMqK20GSbHIyxuihGjGc3a4fxluJQB8Ku4gh85RVz7rnmoots+p769a3J QgafPKXvyU64DB/FRz8iPsUEIj5AVIpPf5x+Zjeu4/MW+ql4AGZgqWBuL1u27FXfA5ZWHIbvvvuu /3siwpWG61IR6yiRALQGU4GTDLMddtihEEQYiTBvu826UvCggJbt2NF+4Cpy0hJL4YCEwIh1Jsrm iFOgNVgFbCSEK6feiiGZAE7Rzwwg7VHqVhBtoZ/lE+J/zYJcmT8V66fHkxIQtc8999y5555b6Jai INCscuXK999/f7169bLgeOCvqEHUEswGk1kruhstwrpNzcL99NOmXz97FZnnwAPtbWTippQpE7iS RFAhBj33+RVPJegnbNQaVAm3MQRyQUbrWo5yoqIE8NTqN0J8kKb1+qTMn6wOihM+yCxdgqWyaNGi 22+/Pc3QVWw+brzxRsLBRbAAlNiEGksFwBTzCHH2SiQ5iQWYKJcvX06abmi0/V++3PTvb1P2fPON jeF21VWmbVtTu3YSSZM+f/fdd4QOA9eVXBKK6TkT5cqVK1kJSKmhkkDWOe4/sm2N7SXHHNnOrQim 91q1amndCyE+rMyYrEo5Cqvg68yfnHiw8hJGOfDKY1VhyXl/MgJbxccwV2OpsJArPkFgpC1etqxW vXpbEQ7//vvNkCFmwQI7QriEfOml5uSTYzVasugMywBXY4hClMW78X9FjobpZx0uZGl8sFQWL15c pUoVrSdcmNFcjalbt65WS4X8dPgbatasqVE9DVha0U/FJ1wiuLQQtRIFL51HpTbklyg2BFo9z5ax TJBbbFHmrbfMBRfYS8iYKdWrm0GDbOiU5Jsp0IfstK4BMi5YBhQTKAcHihGL6KfWkxHRT90nI+r1 01t8S7ZU8rtOu9YVe57tOvf999WnTt28eXMzYQJpee1NH2LOXnmljT+r4gENrfVkBPkwUYJO05p/ UdY5tuPbJA3Hnf7QgTTOXhWjHFDO7bffPn2GJKskgkN8uqNgp+tTSZbk9PUWwJTa6/Lz5pXp0GGL a67ZhEvI++5rRo0yY8cm6xJyifrG8ZbiuGGQT7AKF6+iRDWIbQGJp6I43gTKqfhGKoJjeikNOfic TyW2c8jGjgHJVBg67IsvTN++pmVL7h7/sdVW64mY8sADpn177pDEXR4Z9o/AU0TJzPClxBQHpwLQ QXGsau7F6A5xiX6CU1FsqaCcTKGJGVEZdpTIhEwvik0xd/qToUa44gFy4JFHTJMm5vrrzRdf/HHg gauGDPkNYIrS2zFyRBIg8+JWlW7qRHyKaVRMWtxGSkj90a2fzlIJSW2Cr5YzyI03eIOvO/IaFy2y GBRSH7/2miEeGul7pk3brEWL2GZCzp1BBBpRjHKAP+in4siEYGm5/6kYMgycFv1UDBlGOXXn+kZ8 ivXTWSq5r0ER1UAgBw0jjdw306aZM86w95B//NEce6yk7ylbp84OW2+9eUS8zEMz3DBXDOhjP8f1 XcU3JEtDjFr0U7Glols/JUatnq1s0TO0w6nkYfXKqEkCcvzI0p7o5803be6e1q3NBx+YnXe2uQZn zjRHHAFNf/7xxxerV6uFDG/IpfwFoBylDzgVUA66c9WSOURxCkYwcOgncAelGmpQzjQjlyaRAwgO 8SnWT+dTSYxagpZKMLR77VozYIDhfOe++wyzIYl7iD9LSLe/Iyqy1DHMFAP6kJ3ueQT9VAzok1y1 CR6AJc1zop8Zhfcsqcp4/V4a7v4Ul4s+XtLIvjfOp5I976J5M8GAqWefNW3amGuusZmQSYA8frwZ PtzeRv73o9jzDKHqc9UmWD/TG8C6k5k7/UxPC+JbSrd+Op9KfDUvpWfkAk0eJBNXyo03mrPOMg8/ bLbayqYYJJ7beecVvITMOSuhwxRHyQRwSqzrxGhbhh1lnQPloBiIA06latWqGoBiRUgWwCkDUHEU bJRTayYERIp+Ij7FCVCdpZLhlJy/4uhikrwO69eb6dPtJeQ+fcjOZ447zh73EDqFGPmFPSx1ANcV X5VEdooDgMpcqXidE/1M0gDMcKaSPO2KByD6qXgAumj6Geq7Kx4aBwg8lZjIRQBmcZ+AnJ0/39Sq ZSOmYKacdprZpMhDRk5YSXZKHrjQ+Jfnin/44QcIzHMnQmsefAOAU8WQYWAcS5cuTTykvWgF+P77 79FPxUAH9FNx6EXJpawwNGgBjXU4ldBm8eAqTsCO57ffzLhxFjkLfhaz4/TT7Z1k3CoVKwbHhkTW lADZJZKv0XVaNxDH6Wd0mhROS7r1053+hKM1IdSaAM8zl5BBzl54oXn/fVO7trn7bguePeigNJmR AALTpKSIYroJhDr1BOYm/7i/rV586gmMu4YF0T/nUwmCi2HWQS7Q+EbW+vprc/vtFpWCB6VsWXsJ GQgtoVMqVEiTJRwhk6uWQK5plk9cMSKcQmDiup1mh9nPgRcG05dm+cQVA+tdu3bt5EHa02Y0gSXR T8VIDvST2Ghp8yNhBSXXt+Ig0c6nkhiN5Ag5jnGZQM6+8IJp2tQCU1auNHvsYSOmkAyZD5k8AB0I +6Y4ngqyUxzXDlFzUq443Aj6CYgqjgMwk1FWTFlIg0DF8VQYfYpRODJ/KtZPZ6kENNDDr4YYi6Ay w28nkxaAiGKgYKY8/7zZbjuLnJ071/5ZNHK2qNoZY6tXr1a81AF2g8BMmJukskyUa9asURyjFs1c tWoVgYaTJJVM+gpYGMyp4qUO5STddyYsSVJZjDCmF92xJUUe7vQnLb18+mlzxRVm8eJ/FcaVcPnl do0uRc8ff9jrPK1aWeTsV1+Zk082kydb5GydOlkzQTemr5Tg3bKWfvxf1C1B3dTFX7ty72EpkaCz VEpWlW+/tWHMhg61dgnRVuXBrUBWYDLY3HyzIc5ZeA8n5XFJlYmldskl5vzz7blPpUo2SsqkSebU U3OhnWFGei3FkDcQALrzh4ExUgwzEv1UHDAG0iBQ8W7B6Wcu83N83nWWSsmyIEdN+/Zkt7doUYwV 8s2tWWO6drXJgEGCtm1rttmm5EqyLkGMxfwD+vB+jx5tGjWy///yi2nWzPLiuutMzlA1JkpigOqO UQuBWUs/5i+ywgFXVByjlk1C9erVCTQcc0Fk3T3AmOinYlMM/STMd9b8ifmLbISqVaumOIayx39n qZSsiptuajp2NCNHWmPlkUdsUHisEwKx/uc/Ztgwa7tQILyH0Ex5PoZ88UVrqXEJ+eOPLWCW3D0T J5oDDgiEZLC0HCQrxqmQIE0xjAOcCmEJUdFAlCGGlYADAIijOAWj6KdiSDv6GTucX3CKDsBIt346 SyVjZTn3XHPXXaZGDfPkk+bRRw0XMwcONBdckHE9mb4Ami9vEyVIlCFDLFSWS8ik74EF+JE4AMJG C+hhigTTpxjQx8UKxRFO0QIgw4pDZKKfrHOKYyiLfiq2VFBOxYBomT8V7/ScpZLNSgt+1Iscsf32 Fk6q+Zk92zRvbsE4X35pDjnEPPCARaXsuqtmkh1tjgOOA44DSeOA4kvmzlLJWBm5anrppeatt0yZ MjbIGeFYuQ20bFnG9WT6AolAow7ss2SJvYRM2FkuIZcrZ264wUyZYpGzmV9CLpFYsLQcJMcFMlxi dzMvwBGy4sBT4FQAAejGARB6UTEOAAgO+qkY0o5yxjdyZubzScobAIwQn8ulnDMjtVSwfLl1LsgZ CGdA4EqB2T70kLnsMvPpp+ESCTI/uoUctOyMGebMM23k2R9/NMcea5GzvXrZGPnhPEyRLAOKJ0pk p3idQynQT8WXmzDFWMujG4DhjLJiagWSqXsAsoor1k+ZPxWHGHY+lQymBJZvXAycfmCd9O9vg8Vz UZdLy+XLmzlzzFVXmXXrMqgt06IApiJChH30kaXtnHPM229bPA4IFayWww6zTqTQHon8pjiKq/rI bySq1Z2rduXKlYqBOKAcGICKgWLkolcMaZfIb4qBOM5SyWDt/fNPe+sHuwRHQ+fOG1/k+g9L+dZb 2+MRwqGF90QRTR9bjFtM3D0mjNvvv9tzH+wyLjVBW8gPJ6zAwRSfs7IG6Ma7oZ9etHKODfE+pjzA sj/5JGQ1CrN6xKd4IQeSqXsA+vUzTDXJT93q509nqWSgWJgj/fpZqEbKTR+uK5PrBi8LBcJ7OIkM 93AEMApmF+dYQG8aNLCZkMeONQcfHB5FKTUrjuUApchON4FQJwS+8Ya9HMZ9di86Il8SeYiwOyCz OUVM6INrPdwBmFe+lB79zCubQ2wc/VQcuM9ZKpmpDhHOuOlTEFF62mkm7LBeAPrId5pZd9MsjSuF CLstWlgPCg9HPzNn2v832yzNCnIvxjCrUaOG4iCnRO2DwNwZFc8amCJJpCy5lMmrDd6cvBMYvWKs /PSTDe48YYJ55x2Du4Wklol7iEmoO1et6KdioAPKqRjSDoIK8SmOTOgslcTMmQQ8CD4XKOdVxIQh 5mzPnvYS8qGHmlmzLPSmbt2I+YL3kmgxisM5ILu8hcOJRJbop4QbAX49ZoypWNFqFieHL79svSlg z3lwSQLtChPvFBapaCax0RSf/kAa+qn4+NXTz7BUJK/1Ijj0M/gFIq9EFdq4i1EbP5n8u0dr164N GNC3aJG59lrTuLGZN8/Gh2E9IctikyZm882j5wUTJXhMxUgO4gsrBpwyUX674UFz8MRx+gPeCZ0i lPPxx9toxhyM3nKLufpqi/RK4sMaACQzz0Giw2QcYEz0U7EphnISpjZMFuazbvQT8eneCwl/naWS Tz1Lp20Wg8B2PKBlQdYQc/aOO8xff5lTTrGJkUk0uN126fQkpDKKHSpwDNmpJ9Cvn1wdw6GC++Tn n62+cLTIAdAGHEtSH8QX2ACMHw9Km37GTwK59ki3fnrccZZKrooS9vsEAwgmgR+IRy714IV/912z 0042jxEg4aOOCrv/xdcv8SoUIxY5SNZ9iky8Cn/gKbAppIfynqVLo4iOGJ4Oo5nEXVQcT0X0UzEk U308Fd3xfpylEt7kFnDNxFjMNUYtzvk777TbWzwouFKwV4hhR8bBkIC6mTCAayNA3oIxxTJpN7Ky zCMCOFX5sMJVrFjRi1ELqPaaa+xVd856CB9YvboF2JInKuzoiOHxFqhplSpVFMfuE/1UfD0N/STM d3gakt+aERz66WLU5lcKrnXLAc5Zs8epcN2CexctW1qP/OLF1pVyzz1m1Ciz334xYS4H5OAAFEd+ AwcAgTHhduDd4OyAsFqCU+FC8vXXW1cdZz2EQ8ReGTDA4lQA2BLfmbCCSXzAAXzxxRe6cSrop2Kc CvoJ1C+JupdOnxGcbv10PpV01CAWZUBLZbmQf/65uekmi2x84gmbBaBrV/P44+bss4l/HgvCNnSC pY5lQDGSg6VO8TqHBNHPdet+4QP4bO7+YBv37m31DrcKmBUMFza0BFMh3yXuvMQ9aCa2puK7FYDZ 0U/FQJwN+hlmEPG86jT6ifgUG5rOUsmrfmXSeJaTCEmJWrUyffrYre7RR9ugFgMHWp9K/J4gIcOO usg54IkPfDZXyrj23qXLPxBadHDwYBsO7qyzwkhwGQW1uvVTdgtR8DFPbZQG8emWoChOGa1EDh48 eMqGp27kMUKCHZJcsQPGkcFJOaAArvbgfAfcCEKC+P8dO5oqVYLtVVC1sSfg7IDQdlpBi0Q7YFO+ /fbbB8WxuNUjV0C1pqvFm8LZAeHRtGa5Y0fOA9JIK6od/QRNFVbwzHyPRrwpzJ+K9dP5VPKtYmm3 zxhLFzBFgiK87aeeatM9Y6acfrpN94wjPq5mCjxgfmSW1GqmQCArnAc4TVvmSSqIfmpdBhADiFog mYpjKDO3KDZTkCDKuS2pZZU+IGp166ezVBKjuZ9//nlaiLBXXzXt2plOnWw6uPr1bcBZwLMNG8ac Tvasy5YtU3yQTB5sCIy5FLLuHh7ZVatWkc016xpi/iIQsSVLlpBwOOb9zLp733//PfqpGIiDfoI5 zZo/MX8RmNHSpUuzv3IRc/J83XPxVOIuq5JzKYNEIa0gofExTUDLgpl98kmbfGWbbeJO24YzchYD rUeQ8B/3bJaA6PgLb0MP1eeqRXyKEYuS61vxAHT6mZCJpIRuOksl7nLkkLW4uEzcuGjd2lx8MbeZ zb77mokTLUIlUSnxtB6Qi2IhO90ECo1xH0U59E83dTkwJhmvljB/JoOI4nrJ9FIaVNRZKnFXVY4h AUwV0ktc7mBQuFzBJeTy5W3ILeK5Ed4twkzIufNOImvpjvwGgbkzKp41MEWSqFYxXhj9rFatmuIo w0SVRD8VR35DPxUDxWT+TBfIGM9JJL1eOUslPT7lr1Qhe4LffrPhKc44w0auIGjKkUfauPj9+5t6 9fLXzexb1u1yUO9T0b2lE/EpVlEhUPGmvDT4VBTrp7euOEsl+yU2mje/+eabfwH6gGdecYUFoyxY YCpWtPErZs40J59sk8Il8OEUGciwYiQHV5QhMIGSSavL4BvWrFlDGNC0SiewEBgO8MIIMYF9T6vL kAbgVDGiFv2UGMoqH5k/dceWFME5SyXuCgzkjVyutpdcPB4xwiZABj/76682AiieFQ6AKlSIOw3F 9g8CFQP6CBijGI+JYKFOPYGKYyg7/Uz05CkDULF+Op9KYvRzy2222YzsKa+9Zi66yIZx+/BDewl5 0CB70+ewwxJDRhEdxTdLUDvFx+SEiskgal8CxZmSSzmBFBTXZcn1rTjej+in4tMf3bmUZf4EraJs 3BUkx/lU4i7iCmXKbNuvn4XK3ncfgahsatoHHrA530gEl/xHcoE6RG1CJclECZwW0HdC+19it1kD qlatqtjWxA5jACpe6tBP3Yha3frpfColzlHxKPDoo5s1b77JLbcY4CkHH2zuv996U/bcMx6dC6AX Ek1f8TE5Qe0UH5NzbEfoMKLbBaAKsawC1zooHMWRCcn2gH4qPr9DPxUH7hP9/BUwgPbH+VTiKuEl S8zNN1vk7NNPW+TsVVeZBx80TZuazTePa4+z6ReWClOJYkuFSQQCs2FNQt5hGVC8Eoh+KkZ8QxoE KgY6oJyKQ7giOPYJivXT+VRivA5gIHOdp3lze6/nxx+/23///yOY24ABplq1GHc6+64phtPCFJfK NXvNiMGbiI/FQLGKOv2MgZZl3wXRT8WGprNUsleOcN/86CNz4YWmZUvzxhs2s+DgwWU48eG+j9KH SACEZlKMWATiAIFKpWfJAgSgGwdQuXJlxZG1IA39VAxpRzm1Jvpm9AEwqlSpkmL9dJZK/NaOn382 o0aZZs3MpEnm99/tJeTp0wmdsnW9eluRJFnpg6VCplPFgD7AwopTuYKoJcip4hCuLOEk41WM+CbX N/qp+O4PyqlYP5k/deuns1RitvLjQSHmLJmQ33/f7LSTGT/ejB4tl5C/+vxzIIsx625g3QERtnLl SsWIRY7JITAwfsWsIpzPxA378ssvY9avwLpD5Lfly5crBjqAckA/FQPFUE6CvwWmEDGrCMGtWLFC cWRCZ6nERuMYRb16mdNOswmQyYRMrsGHHzbnnWeIobLhAS2leB5hqQNzqvicFVNMNzIf/VQM6BP9 VHw1xulnbFaCbDqiXj+dpZKNWgT8zl9/mblzbYrB7t1t+p4jjrCZkIlCu+uu/oZ0Z+WAUhzsip3P iE8xCEDEp55AxfoJaerFpzstju7501kqAVsdGVe3eLHp1s1eQn7qKQPi8vrrLSqF+z4FHsJqKQY6 uMhvGWtOnF6QyG+6cykTWUsx0EF9LmX1kQkJ3Kc4MqGzVPI633PrmMgoAwcaULSnn25mzTJ9+phK lYrqk+JLkpCsnjrFBModV8UE5nWaiKhx3eJz+hmRGoXcjIv8FjKDU6p/6y3Tvr254AKzcKFFzt5+ u5kwwRx6aDGdIIKk4shaHJMDeVMMdADsphhwit6S65sn2lEUXWuSq1YxYhGwMPqpGIiDcq5duzY6 jYm2JfQTSLvLpRwt13W3RqDSMWOsB4V7PeRGPussG97t6qvNdtsVT7fuVMPQrptAtnSKlwERn3oC FXsdnH4mfdnRPX+6059o9XP+fNOunenY0XBhda+9rMkyZYr9kMZDLAfF4UYAOhDRQTHkDdlBYBpy TmqRLTY8Se19Sf0W/VQ8ACEN8SmGDEOd4nA4op+6MdEyRsto3S4MHjx4yoanbt26JU1HYf6+erW5 +24b0o2YE1w87tDBBk2pXz/9JjGZUUeta7ls6RTD1yXWteKlThwqWudKp5/pz1TxLKlePzkAYnpR bGuKXjmcSmjji0vIc+aYFi1suBTMlKOOMvfdZ+64IyMzhc4BUiHfaWi9zHPFrATfffed4oAxROOA wDxzObTmER+hw3TjqEA5KI5MCGkQqPj8Dv1UHLiPXRDTi2L9zPPpT5p47OJzg8XaG7R8uU3fQ6yU F1805cubvn3NtGk2vNsmGZuGjDTFgCmmSCBvii0VrEzFgFPmESZKxcmi0cyvv/5a8UqAfoLZVxx6 Ef1kCg3NVs9zxTJ/6o4tmQefCijlZ555ZtSoUd27d+/bt+8HH3xQlJxZm8eNG3f99dfPmzcvpQwG 8syZM6nhpptumjp1auw2rFw8HjvWhsbn/59+sreRuYR83XXFXEIuXtljbZAFNE5LA40BsSqO1SgW n3qnehz1Keg+KdbPoFkV3/oy3uJnTQpme69evY477rjbbrtt0qRJ2CuLFi0qqrbZs2d369bt7rvv fuWVV/xlMB5vvPHGSy655LXXXnvzzTcpc/XVV8doz8rd40susZeQuY1cr5496wE5y7lPDg9Rp3Qj FrfZZhvFMA7QfBCYg/zj/iqhw3ji3sts+ycZNBVDMkU/FRtkujNoop+IT3Eu+jyc/mCpHHvssXfc ccewYcMaN27M2ChqeKxatWr8+PG77757rVq1UtySI0aMmDZt2sUXXzxx4kTMna5duz744IN4X7Kd iIJ7j0vIBEfh7jER8Tfd1N70efBB06WL2WyzHNsga7nipQ4bhRiLilcCwkdCYI46ENvXGcLEUEZF Y9vDHDsm+qk4BqjEqFW8VUA/tyspEkSOSpLH19XrZx4sFW4HNG3atEuXLieffHL16tWLki5BwAYM GMD4ueKKK/Al+C0VUmJioOyxxx5XXXVV5cqVCZPcoUOHAw88kMOgxQSnL+yJaK/wzDMWkkJ0/CVL zIEHWmNl+HDToEEgGswxueJzVomspficlaBhEBiIJsSwEvzqjEpUNIZ9C6RL6Ofq1at1R35DPxUD xdDPGDndA1FKXyWin4qBjHmwVPxGQzED49lnn33qqac6duxYr169FCDbxx9/zDeHHHKIl4YDg+a8 88778MMPFyxYUFAHaDH0zfqKFebmm22+nkcescjZrl1t+h6slv/8JyidZBUn9XxQtcWwHsXLANxG 1XUTCCRTMeCUnRLAOMVXY9gZop8R7ejyMfuwiiveCIl+KjY0PZUp26NHj+j157nnnlu4cOEpp5yy 67/zBmP/cqDToEEDXC9Lly6dM2cOHpSj/sZ5vPrqqwBsGzVqtN9++3l9ZpbkGAjzpWHDhn5CALLw 4Pr76quvMHE+/fRTjvRw0iBUvDus/cywosH8SSU8fCkjVn6Se+p8ia4zntEJjgMpxsT8O/fXf/65 7NNPm4suMvff/+cvv5Q5+ODfhwz5uU2b3ypUWL+hCa9O6ZVXJz9RFbOD1EkTfOBXzxzxStIcfYAn 7Fz5TEl65ZWkq1KS1yGNqmRM8oEm+EAH+F9O2YQE/qQSapOSEsiE76WksEIWHjojdUoT0k9pXSLf eyX50880qbMo9vrrpCR10hYEYlDyUwqBHtO8Ouk2NQuBKSITAvmVSigPe/ksL3pM8/rplYS9QpFX 0mMa/ZE6i2cvxaSkGJR+QUidzCNcjZHjA49ptJsisqLYm6KTflZ4ghBWeHWKagl7Pe31uF1Qzwuy l7557JVAPlInj6e9Hnu5OcL3hJ/yNM0bO8JeT3+Et6KT1EOdBZmWommSSFzYKyOX3kqdQpGMnRSd lJL+EbFx5BYomSIy/5DnJ7miyI5c8kX7aedX6hT2ik4WZJp/lHmCgJmUFBJ4JA6NsFeGp0egxwr4 ljLKvH5KPXTSGxFSUpoQrfAzzc9eUS3KcylBvNcp7IVAb+zQRDF1euwVpnklS2Svv6R/5MpA9pgm dXr649eKQiccP3sZgNDIDENtEOjppJ9phY4yT7VS2OtJMB32pqwmtC6zil97U5hWvMio0JvPRe3x uMvQ85Y2acKvad7ILX7mF50syF5vjfCrltQJc1KWy4I6WSJ7kbW8hSIVZTTHy1IZMmQIOFmwLJzs LFu2bO7cuX5L5fXXX58/fz6HR3zpGSUkreAG0MEHH4yx4rdUpDCzzEcffYRV9O6772K1lC9fHnZs tdVWCIwZVjYTTLIUQ94wS7CreLNFv3HeUEZKMpJx4az98Ucm5l/nz9+0T58tCJSybNn66tV/79at TP/+/7fHHt9+883P33+//q+/eJG3mAKoU+Y4qRPlZtFCcizP9AHd4k9WMkIaUBKBoSVSkj+Bp/A/ nyX8FHXSSerkRSpEqHRboq1AAgX8dVKSOikpJg5cggT+pDmvJATyJ/ULgWLJSZ30U+qUzvCBknIf VUryK81Rkj9pgm/4k5KQRkkaoh7xSQp7eZE6mS9go8de+OktVzRh2bt2rTDNYwVNSD9FZPwPN5Ag n6mTkl7rVMWfVEIfME899npM8/dTStIlOuOVpGlhL63TVSoRQfjZSz9pnaYpya9wjML+ksgUemWj Q7dlOqMSv6YVxV7qFJ3kRTn1E52UQ5YUnaSflBSRCXvpJ7QLRTBN2MuvVEIf0B+PvVDHu9Qpa2RB kcFeuR4vAUwltwj1UEmK9vInlYtwRQ2oU/Sc/0UNELonMn6VuKjopIwIuu0xTYTraZoEaBZNk5L0 ljqpRCgSQfg1jW4zxoUVIghRLYrJKBOmCXupUxZp/hRV9JhGnaLn1CMzOB2jdWEvfzI8qVwIpNuU TGFaCntFexkRtCgU8adYeOiPDE8oomY/0zyd9IuMMt6I4EVa50WhiD+ZHCjsZ5rHCj97ZXKgM9Qm xhAEyogQ9sIKKhT98TRN2EtJT9OkpExiwjSq9aY7GTsyHguy1z+J+VVLSsrU5Ol5CnuFaf4JR2j3 2Muf9JM/6b9or+ikTHewgj/pMz0XVsjc6004tM6vHntllKWwV5gmIpOSor0yiaXUCYF8iVz4n26j Px57hWnefE7HqDllPvemJmiU2UBGGbKWaUoGsixYniC8+ZyfZN/LT8I0KBWR+YXLn/6BLCVFEPwv E6NwSSYH/3IJ7XTDY4WwV1gh2iud8er02EtJWYLhiWyNCnlk3xDxc8stt9SpU4cLPv52X3zxxQMO OGD48OHy5csvv7znnnv27t3bKwPMFh8MiFr/W2+88QaYlYEDB6aQMGjQILwsn332Gd9vCBP6VzA0 fvvt+kmT1jdosJ4kwPxr0mT9Cy8EU3MRtchSF2oTeaxcNr557EDYTcu+MOxW8li/7N3z2IFQmxb/ HP+H2koeK2eVlSVW68PoU6yf3umPVvF5dEV3S7n4MyZMKqwNXCkc7sh2mW9EDJiBqBqvY7JhlzGu /FVRRvZzhdYvBpo4x4rvQLq/EiWFez3vvGM4txo92kyaZA47LN13syoH+bGLGZMVIYW+JIgwka/K BwWGQJWkQRTzCFtbHq0EYmhyFVFxEF6mU/QTMrVKUDfiG8HpRnx7ahkXSwXrBG/wkiVLwNK22PDg TWGCeOihh1q2bAlghR7jO+H/FYBYfQ+vMF0WdQ8t5ZJzAKNxl10Ml07btzczZti4KdtuG0CdxVbB fi54KsLudCb1Y6woJhDSdOPd0E+eTASesLICQ0lYp9PuLqTpFp96/VS/QIgu58dSERyZ/xI/CBIs kiZNmuy7774AZnl22WUXCmCd8FlsFPkGXK039eO6vO+++7glxFtpj83cCjZubGPODh1qdt89t4rS fVuQEOmWTlo5QW+IPqh8kJ3LpZxcyQpmSPEAFP0MzOUcP0lDne7ImRw1KNZPT6EiRdTi5BeQIFd4 gLgedthhxHYTzCD4KWAlJ/z9HH/88VWrVn3sscdOP/10ItvWrl2bHgO3Adn3yCOPIBusFvY6hH0D 19K2bdvm3BP+90Nw2/fee69Zs2YBh/3hFIlgMEUcNoUxTsFhKZ5KmCLLlSuHpaJ1ruRcEgK1Ugdd 6KfiIKdoJjFqBVYcxujOe52QBoFy3SPvnQmjAxKjVit1op+CVw2De/GpM1KfCgZKmzZt2rdvz6Ue TnYwMs4///zOnTsXes6NISI3l/zMIuYbxkyfPn2I+cZD6p8TTzyRD/FhaOA98a42BF5zHCqUaxeK j8nRYcWB0VAhuekQB10Kow9yXUIxjkr0U/HxlqAew9CNONQpFzkV66fH5EgtFWxbPCU8uEwwL7jp A4SWk51Cnf8Uw6w56KCD/ArB9pS0QTfffHONGjUIAk3SH64016xZMw5KE1IfdOdSZorUnUtZbuqG pBt5rxaIGMuA7pUA8SleCbBUdOdSZv5UHOMbSwXxKdZPb4orw1wT2XwHWwtFFxbqvBIoogQEK9hD 2YUXk5lp8ODBUzY8devWjYzAMBpavnw5p1077LBDGJXnvU7kCCYaWxMa896ZMDrAPMKelcPKMCrP e53MHsQ9wvMs57P6Hny66Ce7qYAPkWPDKewwnh133FFrljsiiLIT1rqbJYaK6CdAz9joVCgdidSn ImF5Cj6FnrFho0jcp0LpZlxpHVop9ALoU4wIQ8qgHBQjatXnUkY/vewWoUxRea0U/VSfSxkkR5Hh tvLK/EAaRzkVJ5hEcIivNCyFkVoqgWheaauEzRy6qJVqRhruIsUjjVlSqz8MnWSPoT5XbaVKlRQv dSzkRZ2/65hzSPSt2N/AHg/xaXVI+zXQWSpxH48SgTjuvcy2fxwIkspVslSofIispTuXMmdbiiHD 6iNrEZlQdy5llJMTWJVzC0RJ5EzJ0qD7cZZK3OUrCR3i3sts+wfQgWGmOPaURNPPlj0JeE8yqiSg o1l1Ef2U5DJZvZ2AlyBNouknoK9ZdVG9fkKg7tiSInZnqWSl/hG+pDjUwUYV1BvLAQI5H1EMArAz yIYnwgERdVO6B6DTz6j1Kej2dOunxy3NU0zQKpGf+jhkVYxY5JzV4VTyo1hBtMo6Bw5A670YOASi H5yKYhwAcwsEKoa068apiH7qjoLtfCpBTNXh18HlEcWAU0k4rnhTLvfdwleTvLWAfhaVHzRvfQqu YfXZHtBP3RFOdesnms70otjQdD6V4CazkGsiBKHiyFqCCEuJRBwyRyOtvjTkUkZFI+VphI0B41i5 cmVK/vYI2w+9KdD6DEDFQAcCoCtGfCM4cn3rRsI5n0ros0AgDRABT3Gsa1ikeJaEOpdLOZBRkMdK XK7vPDI/96bV51LWrZ/Op5L7EIioBjx7ig9HBAqgOL1WUUGWI9Ke8JtBP3U7n9FPxQPQ6Wf4QyTc FnTrp7NUwtWeAGsHcEq2owArjFVVDDNSOCkGOhCBFwJjxfMAO4OJSeApMH0B1hmrqoCIEYhdcehF 0c+iQoHHShbZdQb9VBx6Ef1EfIqvXDhLJTu1z8NbBFNRfD5CIAfSayk+3kJ2uvOHgTHSHe8H8SmO 9wNpEKg4ngr6qRgGx8ypWz+dpZIHmyO7JgmwqDtG7RdffKF4qQOMCYHZiT7+b7HCSYq7+Hc1ux5i aCI+xYhaEN8QqNgUA067du3a7KQf/7cQ3JdffukQtfGXlOth4jnACYJinIpu6hKvfOkR4PQzPT7F sZRi2XnsLg00ushvcRxd/j7pzqXMGAMEoBiSCQRHMcoBRUU/FSfwk1zfigMaQRr6qXipA8OhOHCf y6Uc9/W79PSPGLWKlzr1MWqZJRUD+lyM2qRPRJLrW/FWgQDKunMpg2fXHVtShpjzqcR9quGQlbPk uPcy2/5xzkpoJsUZ4DhChsBs2RP39wSnohgHAE5FNw5A9FMxTgWc33fffRf3gZRt/wSnohuz7yyV bLUj2vdIVKsYu85Shx2meKIELKzY0GQooJ+KAX3crQDPrtiSFv1UfPdHdy5l9BPxKdZPb7F1PpVo 7Y7MW1MPyVQcVgtpq89VWxr0UzGMw+ln5lNyvN5wuZTjJY9S25uKFSuC6dNKPgfkVapUURz5DRwA BGoVH+sc+rn99ttrJRDAadWqVRVDhgGcop+KcSrop+5c34hPsX46n0piplbdJjNLneJZ0gLBNtlE N4GlIduDYref6KdipxHhd9UPQMXic5ZKYiwV8G66cymTq1Zx5DdOkSEwMdqWYUfBNwDoUwwZRjNX rFihGGkECodkvIqjYKOfinN9Sy5lxZEJnaWS4ZSc1+KlwWTOK4Nd4zlxQDEek6GnmDqRum4CdVOn XnzOUslpao7yZfVmiiMwSnUKvC31iFqnn4HrTJQVOv2MktvhteXu/oTH22BqBtCnGxFWp06dLbfc Mhhmxa8W8mBDYID9+u038+uvhdT3888BNpJuVSwD1atXr1atWrovJK0cWO+6detuu+22Set4uv0l Khr6qTiXMvqpGNIO4hvxKb5y4Xwq6Y7kvJcjmIri6/L4Zgl4oDiXMrIj4khQWvR//2d69zY33JBq rMyday66yHz0UVDtZFAPUacUx/tBM9FPxQMQ0iBQ8RFJadBPxTAjZ6lkMBfntygxQHXnUgbyphhR G2wuZWyRO+6w/265xeBckefRR02XLuaee8y994I5iFRbWeHIVcsTaasRNsYa8PnnnysObQdYmAGo OPQiykmY2ghVJtKmJEZtgHuhSHufSWPu9CcTbrmyjgMZciBYlAPnSC1bWnOkb1/Tv781Vp5/3lxw gfn0U7PffuaUUwg0l2H/XPE0OBCsENNo0BVxHHAc+BcHnKUSd4XgpFxxKlfWAEAqiuNVEMshQBRO xYpmwABz2WVWafv0MY0amTZtzOrV5oADzPjx5tBD86DMZEdTnCBN9FNxQA4QKhCo2BTTrZ/MnLr1 053+5GFOz65JAoAqBkyxBgAZVhyjljzYEJid6At9q1w506+fufJKC1V5+mmzfLk5/HBz992mQYMA G0m3KlY4MvHqjlELJJNArulyJGnlRD8Vm2LoZ4UKFZImlnT7K/Oni1GbLr9cufA4QCJQxYF9OGfl IFkxYpEj5MBhHP/5jznySFO+/Eal23ff/JgpNA9OhUTKinPVglNBfIpxAKKfiiHt6KfiyJkyf7pc yuGtv67mdDkAmk/x3QqWOvDCigF9gIUDB0TjSunWzZDKfuutrRYNH2569foHYJuuYgVUDjNasSXN Es46p9iSZm5BPxVbKiinYkC0+lzf7vQnoHnaVZMzBxTfkBSvQ7AEPvKI6dTJQmgPOsjcd589Bvrr L3PbbaZHj8LjrOQsn9JeQeASjBtDg9XPuFGnvj/q9VMk6BC1cddkQocpPiYHEQbKQTFkeKuttgoQ xvH++xvNFCC0w4aZ006zuNoLL7Q2CreB7rwz6lvK4FQIS0j0sLiPomz7B+C0UqVKCDHbCuL+HhAH kByKIe0oJ1No3MWQbf/AqSA+xfrpfCrZqkbk72GmKL5bwUgjAKjiiRLZBRjhFGRnlSpm773N6NH2 vg8PmJXBg03HjqZyZVOzZh5uKaOfui1pxKcY8Q1pAPYVI2qBDCsGnMr8qXin5yyVyC2ObBtUn0uZ XKCKI79JrtpshZ/6HvFUxo0zEyaYffb55yc2/NwGmj7dnHVWUO2kWw+e5y+++MLlUk6XX/Er98MP P5DrW3GQU925lEFQIT7Fub6dpRK/OaOIHjGJKAacstRhpig+KUd2wdphe+75LzNFtIZrmNxV3myz PGg1+qkYcApDEZ/iAQgkE/EpHoBQp9gOUz9/OkslD3N6dk1yMqL4cASeqKdOPYGKzw7QT6hTLEGQ RoqpE/Gp10/FgfucpZKd2ZCHt8BjBgh0yAMBxTYJYpHIWopxAByTQ2Dc2B5Uf5giAZyC6QuqwrjV AwKgRo0aioE4gFTQT8W5lFHOioR2Vvqgn4hPMRDHWSqJ0Vw8z4qjHeC91O18Fu96YrQt847iWlfv XVc8ACFN9/Gr08/Mx3Qc33C3lOMoFX+fSAQaeOiw+NAsuUAVr+UEnoLA+DA82J5gaJLrmyfYauNT G+sckGHFocPQTwDRioE4KCdhauOjUcH2BP10uZSDZamrLUsOqA/so3jDisgRn24CoU49gYoBp6VB PxWLjxmG0aebQFk4nU8lSwMisteI6qMYxgHQASSHYkwfB8kQGJm2RN8QZ+SKj8nRTMSnOF4FpIHC UQzJRDkVB0ZDPxGfYv10OJXop/QsWyQRqO5cypUrV1ZsijGPQGCWso/9a6xwIL4VIxaBmurOVYsd VqVKFcW3Y9BPwijHfiRl2UEEh/gUm2LOUslSM6J/jVSZinEquC4///zzYCOORC+jYloEBwCBsepS gJ3B7bxmzZrAk0UH2MMcqwJBtXr1asU4FYKGoZ+KcSroJ1C/HNUgtq8jON04KmepxFb3UjumG6ei /phcPYHqcSosBopxAE4/E7MSFNZRxKfYyvRT7HAqcVfUpUuXYjXHvZfZ9o+k8x9//LFipxH+BgjU OpswUS5ZsmTZsmXZyj/u761bt+6jjz5SvCkX/YTMuEsi2/6hnMuXL9dqa4p+cr9JK4HOp5Kt4kf7 Hvr34IMPvvDCC9E2G11rTJSjR49mKomuyWhbevPNN8eMGaN1JcACmzFjxpw5c7ROlNzgRT/fffdd rQSin2PHjv3uu++iHRbRtYZ+zp07V6v4sKFHjRqFfkbH0Dy15HwqeWJ82s3qjqcCDoB4ALpxKhCo daKUeCqKXQ7oJx7NX375Je3xmrCCEu9HcUAjlFOxfkq8H/RT6wzjfCqJmVC4faAYmc/lEa7YKb4k yTVC3XcI0U/FsdhFPxXfohf9VDwAnX4mZqkrtqOafSoMwqRnzJGJUvElNASEHab4GjbhHCBQa+IY rpejn4ovmYt+ahUfS4PoZ9LnyWLWON36ycwpIVUU25oi3DJavUYDBw4cN25cp06dEh3NAulMmDCB HFQnnniiDtM4hQo8z+PHj2/evPlOO+2kksAXX3wRmNEVV1yx5ZZb6iMQ5/PEiROxVFq3bq1yruSK Mvp5wgknNGzYUJ/4oAjlREU7dOhA3BGVBLIKbLHFFq1atVKpn8yfwOBYHQ444ICkE8hkQjrJ4447 rlAXplpL5dZbb73ttttY6fH+JdoaY08gV9ESTUWhk6AMLQhER1VexoZARh17VsVAHDnbEgkqW+pE P5lAZPSpJBD95JEck/oIFPGJfipTTutm+Fs/JVJA0sUH2uaggw568sknCz0uV2upcJ1k5cqVyDLp lqb0P+laWNQ0IQJSuQxsdFpuIFBxZhzWOfXiU0+g08+E2jGa5k+UkMOsPffcs9AlW62lklDNc912 HHAccBxwHHAccBzwc0AzotZJ2nHAccBxwHHAccBxIOkccJZK0iXo+u844DjgOOA44DigmQPOUtEs XUeb44DjgOOA44DjQNI54HAq+ZEgCOf58+cTXpBUn4RLufrqq/fbbz+vK6RyePTRR8nHQXRF7h0Q 7QBQ9Nlnn52SvpxikyZN+uyzzyjDTeZzzjnnkEMOyQ89/26VBK0zZ8587733uOT5/fff77jjjt27 d69YsaJX6q233rr//vtJ4irRFUk9D4H0308g3xMG+6GHHoIJ3IPdd99927RpU7Vq1TgQCF6bLAek FIFAUheddNJJl1xySaEdg4rhw4cTb37//ffv0qUL1/C8YoQwv/fee1966SVi7SNirhqeddZZ3KiM A4GvvvrqY489hoBQUUJudOzY8ZhjjvE6RoeHDBkyb948VFcA0Wgg8uW2nf+yK/p5zz33fPLJJ2Dl atSo0axZs8MPPzwO1CEyxtcrr7wiA3DXXXft2rUrPUzpGyNrypQp9J9cymhg3bp1uYxdv359r9hT Tz1FsHZuinLBpEGDBlyFRdXjQCBdmjVr1ocffsiHH3744dRTT73gggu8sDfI6/LLL1+8eLEom4fZ pwAqyn1s+YZRPG3atGeffZY4tkAdjz766BYtWsQktMw777zz8MMPMwxJdwCmu3PnzkcddZQfiUkq MUTz/PPPS6IAlJNB2rhxY//4YoJlAPI/+lmlShUm2MMOOywONzC4Kvj0009zgZzpBf1Eqa677jpm eL9qkW8L5SSOPoU96TBU/WVYYpimVq1aBYt23nnntm3b1qtXLw4EZjFGyvbo0SOL19wruXCAgTFs 2DB0iLlg0aJFTCgnn3wyOuTVyRV5wgBws65OnTrEg2HGpDCTzvHHH+/Fq2WZvOyyy9DF3XffvUKF CoxJJl+A07Vq1cqlb4G8S1f79OlDShFmSeYUjBVmAX94N0I4sHizzkF1uXLlYML06dMpfMQRR8it QibT2bNnX3XVVZgyEMVSQQEGJ+tlHNZyFnJWZdY5KMXqQkYsBoVOAS+//PL111+/cOFCBNeoUaPy 5csLh4lf3r9//zvvvJN3iSXz6aefYroRcyUOcTvQz6lTpxLIh+mejrFUH3rooazEfksF8wvJsnqh b5UqVYIKVvoDDzzQCxuzYsUKosg899xz2AHoJ4r6xBNP7LXXXjVr1gxEx3KpZO3atXCexYAB+Pbb b7MSs4alBBSBavr/2muvVatWDQEhL0bcbrvtxpAUQT/++OOs65jRDEAMNSwD1Jj1MmW1yKWfWb/7 /vvv33HHHfSHXAcLFiyQgEz+UMIMJbYHkMYKzf/sEDBMoaVp06b8CYFQdPvttxOVCo1lkCJNrBZM GeJ2xCFiL5MDcW7oMAlc2RExb6Ba3gBEWJBP//lml112YZ5hkNJ/piA2PNJ/XpT5kwKQj1mAfqLA MCTvaznjbuTIkSgY+skow9hq0qQJg8jrGOJD9yjAaMKOwRaBOtYLZg9vgcDEpAwXYFFaSGbXR1Xo Z1LDbMoFPPdEyQFmgTfeeIMZBDViGWNqwMXi7wB7NaZR9FW+ZKVnU8uSwGot36CU3bp1YwLCrJZv 2Jqz57voootY1KOkpdC26Dm2CFtqZkyWcGY3Ngf+kow95lAvTAUzDoOKOdEjkEkWJwSWGTse2bJj +jCh4GKRyAH5fRAccxz/s7Fjobr00ksL7RVksgs/44wzTjvtNIxRyekqDzMLcyKmmEiZrSEF2K9j leaXNOH2/7d317GSFdsawB8Xd3cZ3F3C4GRwCQ4BBpnBXTNIIDgMrgkQCG7B3cPg7u7u7m739+56 d7+d3WfOnO7p6e7DrP3HSZ/dtWvX+sq++taq6pdeegkbo6k4l8hqrGhmUTZl3mSTTYyeRROtlBka ZEIN24OBjNzM8VSHTmifJgC9zwxHVzA3U3rwkrIJ7MKt3cdjivuYNE4T/+I6Bn0TW/x4IcTOPPNM whipqWjVbaxHHBpF1t4sYEzh2meIl0O79FOVpXYgE2ngo306EY6l/tVbt9tuO3c0+7Z3QAUwPiCR ft/09NNPxyMvvfTScql0TMsbCmUx7DCQXuJUsbijjo4//nj1RfOLBwlsCy64IN0l7G3vpbJQK8SC oDJgwADrhBAmo1Q+nHHGGQZDTQ4nc4fGuf/++8MB34pk7m+xxRY4yhNPPBF3rrzyyj59+pg1aDDt ta6xt2ecSsPrlsYfxHD5eszfqAaFQM1V8tKj+vXrZ9ET9/UozU5zxPrjjpHIGkgy42ncwaZps2Z6 TbPxkjXpSSXXuyymrba7XIHRUSwRiq/0OtO5ed04EkWgx+icBkcrHv9KyVIZWgobTJtUzMazUXGm MX9jgVJbg5G1ZZ+50CCChBkci/cZR4YMGWKF5AzlqGVeoYEDB6picnTjxWrSk9A2xmlRZiYaydCs s3obmn5gqog5UpuMhaDc1l13XfMfSt2kYjaeDReG3jfPPPOQglhRayApCEdRI0woXqOuC3tZgUNT YmQS7RPjsV63zEU6Gy9Zk55kV9++fS24NbyeKAQIpTc7ijcMtBAieZrhHB6tq7qjt+IxGoMVVNsP X2ERmQdN5NOhl9RWH+8eEmO4KA4oN4wg3PhWnMFIHqPK8DivttpqgY/PJE+EBn8dWoNvUuUMOxs4 o03aHp2v9uRS4yTHq3WpOSIUFJMIzcxTlrhRO3iqxbAE8gkD+V5laFztpb/XmExl2O1mxKWIswV7 kr/mpcEVP8+Ba+uNhRAtB03W2KQrWm30JMPWpOnh0aUmNgE3zIlxP4YSo0zZNWvFgN5ZSHG4tKbw PXlLmX9U0lsSmQAE3xggKkdkBicziJTjcgyU+Aqi2VHnaXbZPmPsU2tn/+fCj0lBZfM1QvIDtlqe JqlrtAq+zrbPBEVRh9Y+MRUKirmNS27fffcVJYBBmvyKB1EukzcDizv+5YOAg1VET1pOa9J00z6L Ahhb8GYihNVC1BfbaaJETS6/ogZ1QPO96sOnW1P4nryly/aJb5nIyRKhyMqHZKI/ossRKKZ9EsPW WmutwhvrJgSQUe7OzmmfSlVbGIqL8R9LY2ZRO6YGR7syMwBBZbRDElF5oYi6GXl0244ysCe1LE0y lR4C1c5k1gHkTZ3KsibKYSgxBsVyp7gkwME14naWtZ53W9aQhXhGrLbploMHD1522WVlYP6wMDVq VML3dE4rDPJsPS9pT1oVdPTRR5Nb6ee1Z9SaxQ0ZqFg55oa4okJNA0ai9hS6nrcqOblIHAMzDzjg AITMDwAVIyDr6EaVkBTVZzBFVup5TxvSKjkeqSJOPfVU0UjEFUvVQYMGCZoWrhEF0j4tYRlYTBWm BL3PU+EhakO5G32lGd2ggTcX4wkr3BG9ThMtctU+TYd6X0cx6S6NRkd41fku+/fvH45XdUcEPfzw w0M00j3VMn96mUmrPpXY+eOnaiIp4cSKWrQ0oSqqxh12MRCrNkGga2V8wML32vkGdlmnyVQa7d+t ek5bFGCLI4e8HK/V4Pyt/D6CWZwWapTpLQMlHchwbxFgcBePadEWQX/6mDu1P9cuoM8jxKRWYd/4 e4jnJgDeKyNjjB3lyx3sk+1F+Ft8y0BodP5MoNjc56QULkghVlz+OKXtXawOQxjIkIpvKH4CqRaN xlEeMU9iitqYv4Z+AQEiivh0IjrYgiE6lzpiS+VHzkOo7/zqK8OmwPbIGE94Cor76ogV2md5Imcv AyHT+cOLooZ7PTQz40ksAAo1SO+TpjJ+xt6ozh9e9DUBfBYD5EyhtSQxjh6an+aq00X5GR6/sVyu a81VzfaiCaJc+GQqI2a0a16uIqFsErH92FhZ5Bp9rKJ8xiRnNOmJZ7p5BWw8J25+Eaku4oqFgrg/ orrs9LEY9CtjYsQqdsLWg+5ttgoXTyO62YAiJXGIOUbGwnlX/CxcxUA1GD/k0TimLXnSHCae1GXR 5rJsjU0iZJUQhKKOaklJr6i+oI+6GG+I8AW1Rg3aaqut+CK1zwh0CAMrpCRqs/PbZ7mNCHvnUbVI IDkUDS8aYcVzxDrtk3Wd3z5JJiL0aX6YpT0vwvtsVRMLfPDBB4ekx4qIMy1DEfb2iuqzBZJYyy4u Y4K0/RYaLQWXRQX98rnSARmo7nqFgbXDWDKVlgztjb7ELE5aX2CBBQjRZSXW6KnNhbJSXP5FtCsu oUbf3NLnBATYLc+BankXnY3Xv7wGitKIpY3DA1pauPpfFmfAeI45tpdfdNFFtFkhRIIeDJfuExtY ERJ0kT3DKUm1K/X639+GJyxhBeHyiUSbtJhDziqxe1Z7oSS1oXz1vNLSUwXFERTFc3qc+GLKeYSh cIWwRZ1WOiCr+cU6fy4vii30kpfEDrWyAKaO1KDBRIMsUqo+y3HttvOnOr2Mw84Ubl9esC7BwiZ1 O8mJEDoaYzGVOGqluGIjW+XMqnoaTuvSclQddthh9j3ZacFjztUllMpNw2Y4lLVPtlSCu9nL8B4G WbfOmJ69KZlKz3BqRyphbnaxcovY+lhx+WttprSKx9EJAUaTTjivogG0WGTlGvE3Hrd+5Wq1Pbs8 jlgkie0oM7YGXjSiHzFAKLYxglPcuseJW07ZEodoy6jadMyDhThL+YyF9ZWDE+07MLWrvuKErhFd 1ObmX16hqj6znW0U5VcIaTSRVw6wam4ZmpKbmdgZFWqhXDuxQg0i4i1iS7VVe7kLqyVWy2aLXjHV BVCaIh+lhUEl9hkdEdtObjGvF5Bq0sJ3tM9OONCo+4pWLwpZORlF1aiy2DmoEdqVbed8KGRxCUIy fhpvewXRZCD6haMYZ+zrYZoKwlqCR4oOtmQlAZZ7JQMR7toTDpvSa0Z0JslURjTC3eUfbg4paicn mzydm2k7jCCV2oMvdUJBVdZDItXjBViL5bsRp4hlaadh/3236Srk4vJK2mqmPEBEWrOa/T5Gk9De LdD1MQujoqeJEmCvY2orJ3S110wVxzplLivnTpQS2UB2vuU/l3gO4YoEdr5kx5NI7CkzAaYijrgo v5PWLHocAtFRA2W0z4pHvzYUQ3O1mUKIYrjGHQxDi3az2BOEvdneJUFlUmxv9RXtszL7cmwhHPa/ FMXTOF2Mis0jEmjYwnQKVYzLT6XzFknTXqPKbw+BR5Prkl44kFCYkT2DldmLqkSBMLZYLJU7oBbL DV1pDO01NgpTKZIBk0BSbPyRAAXRFA0dITnrfWL5SZ7FTjRaoKPStHYyTHstqrw9xpZK9dV6jem4 bLRXOZiK3dcGHDcxmMjQSgkrxc/iZL+OsrEnhckzanuCUvPTmJPIyGKgTMDWmvq/dQyt1UCvqdn1 brYjKhxxxBF6nVFexwtnQYi0Gi5pQUQVmcFOQt2MEqhd2qFQPvW8+eXucRAY6sgAABNHSURBVI72 Eis/h47RXOF5wbETMxwDGRJHUTFZyYGg5A4KYxGrY6C370Ay0R5xkqZB89BDD3Xf+W/lU/l7XJwm J2QIh45KtHpDp5QcQWRITAn0IUO/1Wdc6Kbjg2lFNJVit4ib6h2JMWgaZyXg4LMkEo1UPku0yeXu cXbqhYEaHi5lPrPRmprlX82PjYJMhaQwQSW6iZFoeFarXHhx/g0TVJNqNRNAxld0QUdx7LjjjhaC nTBQqqw4YhjyTHA4h2KzWntTPCsBVmOZmihqIuWBBx6oMTv/xmpVAjI7o7jz1J26tlp1ao7uaY2r AXeCgXw6nFM6DgPN0CZg3dAioYgC9plfUgvUs/iXK2VWfdq2Z21t1aTVnWSGKT20E9yvZmUCjw4o yMYV7dOIYQ2gRigHtiAgmoYOn4MlGy0tA+xLQE9DG1O/RCOrCAOvA201VzvSxZZ1gntLmbU6fwUA EEuifbJa9SkeuQstZoVB1RrVNMFAPynAuhg99FO1L8Kd1CeSTFaUXU2CgVYRndA+ezwU/TdhxC3m 1WIEdAzTm3lLB0Pz41hry03NS0mM+5qjBBqogT4uIoqBsnxSoYPFrOGMQS58xS5fXbfFhgztdc4w ZRoDDXmG9TiESvmlN72ZsRTYoG+YMFW7nDFlwivnpneZtokrvjVcGkF02g6xziyuRkJDtvg2mZmf GHjOOefUltBwIzbTYRsW5eVvSUSOeWUaA5npnLFY4XXChV8iiyQQlchAn9Wgfy3LFE8EdFQfEPzF TgRH+6WnSsmxGU3ayKh9qmh6krmkE6xTBpq5llm0T2xDd7P/pTiF1hyGT7POLKh2GKJyy+d7YjmC AyTwrUqkshA1235+a8CrGA4LMaRootE+WcpAIaVFCc1b7DWAlI9OLteOo33iuEXV56+N6HEgbydc 2qEiqTU26nfap8/uCDINA2lFOpeWqYKUXyMUdsrBWphvsWH8dHBttE/t2SqoEw5QDnj93IquZ1SJ 6BPWsVHoulrzLUNYF92KgRjkSSedVCk8V7JYFgkk00SlcSBvJxyg3Fj7yV8orJvbNeUBMV+u2BKC lGhABkFDpwgprNkKxsYz35ZlduxYpzKjlxmxNZM1vWeNOK6mlK0pmfjhGHKr9U14c2KjoOFAB/Ov xmolxOOjO7FXZ6v8wFhRBvozXd1oS9hEC5pStuHPxIxrERMBsK44wY+BNHPnZVXytxLiCcLPTB7F 9p9Ig8RYtuI9gjc92wlqShQsfokprIv2GRvNhF6qBdVHWjdbWO25b9GGR3b523Xy0Zg7sH2S+q25 LayjfYZH0tzAvVi4YvU+ybRSQov2GXJR5UKvdVUyAwSITMPftJqSgwoyLVF6YmM/69Rg/C4Mr0cM IBHizUdA5arsli/KQDfCWTFsyq5jxDrk5wkVj6BihFFluky0TxdjzeUsCgNpSMZGqnP8fmQ47Crw OghbFeu5JnLLws4RG5zhZugrxs/Y16nrCRPW2NSvkT+OwTQ20tGHpuRZDolWISNhpQUyTWljLc4k mUqLAc/XJQKJQCKQCCQCiUAdCGREbR1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKBRCARSATq QCCZSh1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKBRCARSATqQCCZSh1gZdJEIBFIBBKBRCAR aDECyVRaDHi+LhFIBBKBRCARSATqQCCZSh1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKBRCAR SATqQCCZSh1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKBRCARSATqQCCZSh1gZdJEIBFIBBKB RCARaDECyVRaDHi+LhFIBBKBRCARSATqQCCZSh1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKB RCARSATqQCCZSh1gZdJEIBFIBBKBRCARaDECyVRaDHi+LhFIBBKBRCARSATqQCCZSh1gZdJEIBFI BBKBRCARaDECyVRaDHi+LhFIBBKBRCARSATqQGCUv//+u47kmTQRSATah8Bbb7316aefFu8fa6yx pphiiimnnHK00UZrX6Ga+eZff/31448//uKLL37//fdxxx2XaZNNNtmoo47azHdkXolAItDbEEim 0ttqLMs7siJgUbHDDjvcfPPNBQATTzzxvPPOu8Yaa6y11loTTDBBbwfm66+/vvLKK2+88cZXXnnl 559/RsLmn3/+/v37L7/88qOPPnpvty7LnwgkAg0jMOohhxzS8MP5YCKQCLQSgQsuuODDDz/cdNNN V1tttcUXX3ySSSZ5/vnnhwwZMsoooyyyyCLDqT1gQvfdd98BBxyAJaAITbTrsssuO+aYYyaaaKKZ ZpppaNn+8MMPZ5111tlnnz322GOvuuqqK6ywAjUFZfnyyy+XXnppN5tYnswqEUgEehcCGafSu+or S5sI/M/666+/22677bXXXieffPLee++NplxzzTUvvvjicELz119/vfPOOw888MCbb745nFlVHn/u uefuueceHKubbN97773rrruOMnTEEUccfvjhe+65J3Jz6qmnbrDBBpxczS1P5pYIJAK9C4HUVHpX fWVpR2oEOEfM9xtttNF0000HCByF8PDSSy+hKbPPPvtCCy1EF3n77bfff//98ccf/9tvv/XVJ598 Ms444xST/TfffCPYxeW+WBBfhRIjMT7x+OOPP/3001NPPfWkk076wQcf/Pbbb6jDv/71v+sZn736 9ddfRykk5o6p6BxCTLxXAn8lUDYJPv/8c2VAU7CfWWaZZYwxxvjoo49kqHiVinzmmWduuummaaed lrtnvPHG861kHEBkmLLrB53iJHrjjTeYKZxFgI63eFfk5lsGehcDvYhO441jjjlm8a5ffvmFmWzx lHK++uqrP/7444QTThgguO8pJrz77rvfffddPFtkHgmYLwFwFEMJAVhOMFK3zjQ+ERhhCGScygiD NjNOBJqKABay4YYbPvroo1dddRXXT+RtQj3ooIPc2WeffQgtf/75pw/PPvvs7rvvfsstt9x1112m 28MOO2y99dYzi3MVXXLJJffff7/52Bw899xzC3AhWqAjbm6zzTam7XKRfcU7zGtj+r/66qsxCZQI I0FleGQGDhwoh5inPXjFFVcoBl6iDBKsssoqe+yxx6233nrkkUcqZJEtzkQN2mmnnSrYPPjgg7vu uqso2tNOO23BBRfsEjk5P/nkkxdeeOEjjzwispjzSzG23nrrhRdeWHrfolkMfOihh/Aw5GOGGWaQ YPPNN59tttmCbyExG2+88corr4zVnXfeeS+88IJ3nXTSSTPPPLNCkqbYiMr89NNPuOASSywxYMCA +eabL579/vvvJUAWw0YsasUVVzz44INT8mlqM8/MEoEuEEhNJZtFItBrEKhoKsptwsYhaBg4B96A zdx2220vv/zya6+99tlnnwm2nWOOOdyfccYZn3rqKbSDHrDSSittsskmiy22GFkCkzDRLrDAAiiC lMQMoSHLLrss54tgkWWWWWb66acXtnLmmWeee+65Jm+zvvsUETIJFcQ0T33xUmGwp5xyylRTTYU3 eKmnMCHfTj755GZ6xSNgkIK23XZbDAbNIgVVQJdeCZEAKYkcgoVrY1PQFI4hafr27bv66qvbGYQ5 kU/E6Cg/rsNAtmMhysCor7766t5778VOhN0opze6c/nllyNeCJ+ySYZULbrookwQJcNGoo4wIJmH jfKXTzwLKw4p6VkhTggNUma2/GM2XvWabpAFHQkR0EXzSgQSgc5HgCgiQgVdoChEaTkjhKDyqphx OSzc+eOPP6gpptvllluOtGDpX6Sktcw666wXX3wxp0/cJLFQBVAH9CWePf/8803A5vsyGhgAWsMp I4ol7pNVzNl0CPqHf4kNu+yyizSm9i5h3G+//RSJFtINyIr68MMPUzsYOM8887Dijjvu4L4pHiHb MMFLjzrqKPpHFBh3UQa+GLRsq6224gLzb/EUErPFFlt45LjjjpPYIyzFn/r06bPddttxZhWZk5Tw m80226y4iZ+dcMIJ2Ju/8awi+ffOO+/s/KaSJUwE/mEIZETtSMhO0+TejQARRajp8ccfz91DCbDi N8VG5EpcHB98HKSCcFu4zOU8IzgNhYNrw0zv4r+wydncTIcYGiImafwDFyG0kDriQdEeyATNA9fB lryOpGFq9y/RojFwFVWBjz322O23355YQqTZf//9DzzwQA4aJEaeFCAqDpIRok6YiXZw0EhPaOHz Uqo111xTYaIMEq+zzjpEIw+KmCkKho3RfqgjxR2sjtCy5JJLMipsZBeseL6AQxOSUrbQ8C8bTQON mZlPJQKJQAMIpPenAdDykUSgPQjw/uAcCAGd44knniAemN3xFbpI+CDMoKQIrh/umzJ34cW4/vrr kQkRKp7lE3H5ICZDhuSE8ID49+677/avI0zCQpP0tddeK0M6ivk+HnSJvaXiCHDp16+f6dyzbprv I2BWBEnZdyNcRs70G56UboDzIP/RUkstRZ4RXiNslo/GW5SNM4jV4mCoJrxI4lgjH1EyUvqATiE3 nhVbU/Az3+IWzEStMC3uHiQDhnPNNRduV44vueiii1AQqlXFRqoMQwhUCuBb0gvDIcZePC8jVNrT DfKtIx8CqamMfHWeFvdmBMy+hx56qOlWvMU555zjs3k0ZuthXpgKBcXuleIyASMQlJXunzVJ22hT fpAwQ88QcxonzqEI4nb9i1s4kSViafGDYRapNgGlhDQi6tZ2ZRE2/DuITnAmF2GjkEyKZ9GRCNr1 bOVQmbjDc8T2YRaG7lK2kZKkJIQWKHnWh8GDB7Pxscce4yDbeeedb7jhBtLLMLPNBIlAIjCcCCRT GU4A8/FEoNUIIBbmS7Gc5lGhqYWEMMxyECd4i7Cc8iU2xQaZ7p/l9xk0aFDlQZt9nOYS2gmRQ5Cp oFoRIVQW9MKWH46bYRZpaAnE9ornxaIwDHuJJfMil39rOUe4n7rMiufIhU7FzufuL+bU2sjwYCpe Qbs68cQT+d3YyNnkw/DYOKzi5PeJQCLwfwgkU8mmkAj88xHg+EAmCAZOARmatRhPTOckiiKNp8TB UBd4Ycr3u8zE44QHU/vaa69NnyhOkOMeciZKxKX2HOuImVWqIEPCSlw8LzYHFZlIg7j4y9WFTvmq fL4cjiKE1o5l8bwQ6ObVcuY+g49w4+5LyEY0MWykM3UT4tNzSzNlIpAIdI9AMpVsIYnAPx8BMaT2 raAO4jnKhMMcX5yhwq9ksufowQZEwAQoNuLaEiyC9fbbbxe0UUYKRRC84g72I7rF7pv4lvYQcSTF kWjBVPCAblwwzsa1p6mcQGndxAziuBQm2MUjrlZJMKd4l/gbISa2apOX5pxzTjqHaJUolQu7cgIK izjIhM50U80iY7yIm6lMg6SXVRQJSgJxHO0fmTBwaCrOP78xpYWJQMsRyIjalkOeL0wEGkWg9jyV Sk4RUctdIux0mmmmKb4lGGAhBAA7gUWqkhmIDT77RR4Bp6hA6BZmZRGj4mfN8T5II4KVXGFfDNKA B1BK7FUWHutYObuOzdZ2PpMW7A1GEUJHEaHis7c7mETYqWwRC29RKu8VdYsGOYqtUnI/aXTGGWd4 i8hZL5I/txRy45wYtniR8FX8wFdRQlekkbn4X6/jA3IiiyASZrrQDme7OR5GDrZYB7GIiFpxu3xV 5XhYPAYXUTZ+Kz/mjK+wkSGXXnopjgUEcTD2WznvnwnA8RUOZG+RA2a6V2sarep8LhFIBP4fgWQq 2RoSgV6DAAYQp+lzZ3RZaEzFDI1hOM22vAuXvOE0NsIDVQAbkI8D4uzslYmdPk5OixPrsZkgNH6q EOewTVdoC0HFByzBfeTAKa5oB3biNDkBLmZ9Uz6W4Fu7hOQcu3UcOGunT8TQCKYReYpkeJD+IfyW wFMpv/xxDiyKdOHtTCCisNTJuUEFmOAOckDyob5IIytHum255ZbUFAXAmcCiYKJ6aTzK473Ykg3J QZhc5B8MAzK2OpdP2ff2OP4OAfJr1YWNQBMuw8Y4Vp+E4yu7qNA19M4pMtDL0/R7Tf/JgvZaBPI0 /V5bdVnwkQ8BsgR5w46Y2t/NCTAwlfhBHGlqY0h9S1SgGdAP+EQk4JcxnZd3FPN3oBoIDf6BGRAb Yia2kceD7ovkQGvEqCIQaE1wER4l3h96g8fN9xQOD5ZDfWkSZnc7hnzrp3y6LJs0MmGg3OxmckqK V5T5hBcJPUFQvAj1kQnOUZQwvqXr+JY4pJBMk6Dyuz/4mQcdLVP709NslLkcwkbWidERThsIhI0S SMaK+HWknoczj3ytNS1OBJqGQDKVpkGZGSUCiUAikAgkAolA0xHIiNqmQ5oZJgKJQCKQCCQCiUDT EEim0jQoM6NEIBFIBBKBRCARaDoCyVSaDmlmmAgkAolAIpAIJAJNQyCZStOgzIwSgUQgEUgEEoFE oOkIJFNpOqSZYSKQCCQCiUAikAg0DYFkKk2DMjNKBBKBRCARSAQSgaYjkEyl6ZBmholAIpAIJAKJ QCLQNASSqTQNyswoEUgEEoFEIBFIBJqOwL8BjyZb33UDW3UAAAAASUVORK5CYIJ= ------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="utf-8"





= Quirós Rose, A. & Molino, J. DOI: https://doi.org/= 10.37387/ipc.v13i2.411

 

Quirós Rose, A. & Molino, J. DOI: h= ttps://doi.org/10.37387/ipc.v13i2.411

= 14

Invest. pens. crit, 2025, 13 (2), 21-30

 

 

6

Invest. pens. crit, 2025, 13 (2), 21-30

 

Invest. Pens. Crit. (ISSN 1812-3864; eISSN 2644-4119)

Vol. 13,= No. 2, Mayo - Agosto 2025. pp. 21 – 30  

DOI: https://doi.org/10.37387= /ipc.v13i2.411

Artículo Científico

&n= bsp;

6

 

 

------=_NextPart_01DBB9E2.88947620 Content-Location: file:///C:/D91834EA/004QuirosRose,A.&Molino,J_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBB9E2.88947620--