Light Curve and Physical Properties of Near-Earth Asteroid (137170) 1999 HF1
DOI:
https://doi.org/10.37387/ipc.v14i1.436Keywords:
Near-Earth asteroid, Binary system, Differential photometry, Light curve, Rotation period, Shape and structure, Planetary defense, NEOs, Rotational evolutionAbstract
This work presents a photometric study of the near-Earth asteroid (137170) 1999 HF1, a binary system belonging to the Aten group. Observations were conducted using the 1.23 m telescope at the Calar Alto Observatory, employing differential photometry techniques to obtain its light curve. A rotation period of 2.327 ± 0.057 h was determined, closely matching previously reported values, which confirms the accuracy of the adopted methodology.
The light curve analysis revealed a low amplitude variation (0.122 mag), suggesting that the primary body has a nearly spherical shape and a compact internal structure, capable of withstanding high rotation rates without disintegrating. Additionally, features in the curve point to the presence of a secondary body in orbit, in agreement with prior studies identifying it as a binary system.
The results allow for a detailed characterization of the asteroid’s physical properties and contribute valuable data for refining rotational evolution and dynamical models of NEOs. Moreover, such studies are crucial for developing impact risk mitigation strategies and planetary defense efforts. This work also holds significant educational value by reinforcing essential observational skills for future research in minor body astrophysics.
Downloads
References
Bottkejr, W. et al. (2005) ‘The fossilized size distribution of the main asteroid belt’, Icarus, 175(1), pp. 111–140. Available at: https://doi.org/10.1016/j.icarus.2004.10.026.
Chesley, S.R. et al. (2014) ‘Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu’, Icarus, 235, pp. 5–22. Available at: https://doi.org/10.1016/j.icarus.2014.02.020.
Davenhall, A.C., Privett, G.J. and Taylor, M.B. (2001) ‘The 2-d CCD Data Reduction Cookbook’, Starlink Cookbook, 5. Available at: https://ui.adsabs.harvard.edu/abs/2001StarC...5.....D (Accessed: 23 June 2025).
Dymock, R. (2010) Asteroids and Dwarf Planets and How to Observe Them. New York, NY: Springer New York (Astronomers’ Observing Guides). Available at: https://doi.org/10.1007/978-1-4419-6439-7.
Gratton, R.G., Carretta, E. and Bragaglia, A. (2012) Multiple populations in globular clusters: Lessons learned from the Milky Way globular clusters’, The Astronomy and Astrophysics Review, 20(1), p. 50. Available at: https://doi.org/10.1007/s00159-012-0050-3.
Green, S.F. and Jones, M.H. (2004) An Introduction to the Sun and Stars, An Introduction to the Sun and Stars. Available at: https://ui.adsabs.harvard.edu/abs/2004iss.book....G (Accessed: 23 June 2025).
Harris, A.W. et al. (2014) ‘On the maximum amplitude of harmonics of an asteroid lightcurve’, Icarus, 235, pp. 55–59. Available at: https://doi.org/10.1016/j.icarus.2014.03.004.
Jacobson, S.A. and Scheeres, D.J. (2011) ‘Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems’, Icarus, 214(1), pp. 161–178. Available at: https://doi.org/10.1016/j.icarus.2011.04.009.
Johnston, W. R. (2014). (137170) 1999 HF1. En Asteroids with Satellites Database – Johnston’s Archive. Recuperado el 24 de junio de 2025, de https://www.johnstonsarchive.net/astro/astmoons/am-137170.html
Keller, W.A. (2018) Inside PixInsight. Cham: Springer International Publishing (The Patrick Moore Practical Astronomy Series). Available at: https://doi.org/10.1007/978-3-319-97689-1.
Lu, X.-P. and Jewitt, D. (2019) ‘Dependence of Light Curves on Phase Angle and Asteroid Shape’, The Astronomical Journal, 158(6), p. 220. Available at: https://doi.org/10.3847/1538-3881/ab4ce4.
McNeill, A. et al. (2016) ‘Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1’, Monthly Notices of the Royal Astronomical Society, 459(3), pp. 2964–2972. Available at: https://doi.org/10.1093/mnras/stw847.
Nesvorný, D., Youdin, A.N. and Richardson, D.C. (2010) ‘Formation of Kuiper Belt binaries by gravitational collapse’, The Astronomical Journal, 140(3), pp. 785–793. Available at: https://doi.org/10.1088/0004-6256/140/3/785.
NOAA (National Oceanic and Atmospheric Administration). 2023, April 10. The Atmospheric Window. https://www.noaa.gov/jetstream/satellites/absorb
Parrott, D. (2020). Tycho Tracker: A new tool to facilitate the discovery and recovery of asteroids using synthetic tracking and modern GPU hardware. En 39ᵃ Annual Conference of the Society for Astronomical Sciences (SAS‑2020). https://ui.adsabs.harvard.edu/abs/2020sas..conf..101P/abstract
Parrott, D. (2025). Tycho Tracker: A New Tool to Facilitate the Discovery and Recovery of Asteroids using Synthetic Tracking and Modern GPU Hardware. Recuperado el 24 de junio de 2025, de https://www.tycho-tracker.com/
Polishook, D. and Brosch, N. (2008) ‘Photometry of Aten asteroids—More than a handful of binaries’, Icarus, 194(1), pp. 111–124. Available at: https://doi.org/10.1016/j.icarus.2007.09.022.
Pravec, P. et al. (2006) ‘Photometric survey of binary near-Earth asteroids’, Icarus, 181(1), pp. 63–93. Available at: https://doi.org/10.1016/j.icarus.2005.10.014.
Pravec, P., Harris, A.W. and Warner, B.D. (2006) ‘NEA rotations and binaries’, Proceedings of the International Astronomical Union, 2(S236), pp. 167–176. Available at: https://doi.org/10.1017/S1743921307003201.
Rivkin, A.S. and Cheng, A.F. (2023) Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects’, Nature Communications, 14(1), p. 1003. Available at: https://doi.org/10.1038/s41467-022-35561-2.
Sánchez, S.F. et al. (2008) ‘The Night Sky at the Calar Alto Observatory II: The Sky at the Near-infrared’, Publications of the Astronomical Society of the Pacific, 120(873), pp. 1244–1254. Available at: https://doi.org/10.1086/593981.
A. Sonka et al., New photometric observations of the binary near-earth asteroid (137170) 1999 HF1. Minor Planet Bull. 41(4), 285 (2014). https://ui.adsabs.harvard.edu/abs/2014MPBu...41..285S/abstract
Space Reference. (s. f.). 137170 1999 HF₁. Recuperado el 24 de junio de 2025, de https://www.spacereference.org/asteroid/137170-1999-hf1
Vereshchagina, I. A. (2011). Investigation of multiple asteroids 2006 VV2,(45) Eugenia,(90) Antiope,(762) Pulcova,(87) Sylvia, 137170 (1999 HF1). arXiv preprint arXiv:1102.0152. https://arxiv.org/abs/1102.0152 Walsh, K.J., Richardson, D.C. and Michel, P. (2008) ‘Rotational breakup as the origin of small binary asteroids’, Nature, 454(7201), pp. 188–191. Available at: https://doi.org/10.1038/nature07078.
Warner, B.D. (2016) A Practical Guide to Lightcurve Photometry and Analysis. Cham: Springer International Publishing (The Patrick Moore Practical Astronomy Series). Available at: https://doi.org/10.1007/978-3-319-32750-1.
Warner, B.D., Harris, A.W. and Pravec, P. (2009) ‘The asteroid lightcurve database’, Icarus, 202(1), pp. 134–146. Available at: https://doi.org/10.1016/j.icarus.2009.02.003.
Margot, J.-L., Pravec, P., Taylor, P., Carry, B., & Jacobson, S. A. (2015). Asteroid systems: Binaries, triples, and pairs. En P. Michel, F. E. DeMeo, & W. F. Bottke (Eds.), Asteroids IV (pp. 355–374). University of Arizona Press.
Max-Planck-Institut für Astronomie. (2004, noviembre 16). 25 Years of Calar Alto Observatory – From the Past to the Future. https://www.mpia.de/5314368/2004-07-Calar-Alto
Gratton, R. G., Carretta, E., & Bragaglia, A. (2012). Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. The Astronomy and Astrophysics Review, 20(1), 50. https://doi.org/10.1007/s00159-012-0050-3
Enríquez, D. G., Soler, E. M., García, V. J. M., & Torres, J. A. M. (2011). Astronomía fundamental. Universitat de València. https://books.google.es/books?hl=es&lr=&id=FGZWadltoC8C&oi=fnd&pg=PA1&ots=-65kBT40Y1&sig=qU-zV5-XbEHcsvOcKNvLJbrCUNA#v=onepage&q&f=false
Jain, P. (2024). An introduction to astronomy and astrophysics. CRC Press. https://bib-pubdb1.desy.de/record/612244/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 info:eu-repo/semantics/openAccess

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The authors preserves the patrimonial rights (copyright) of the published works, and favors and allows their reuse.
2. The journal (and its contents) use Creative Commons licenses, specifically the CC BY NC SA type, where: "the beneficiary of the license has the right to copy, distribute, display and represent the work and make derivative works provided you acknowledge and cite the work in the manner specified by the author or licensor."
3. They can be copied, used, disseminated, transmitted and exhibited publicly, provided that: i) the authorship and the original source of its publication (magazine, publisher and URL, DOI of the work) are cited; ii) are not used for commercial purposes.
4. Conditions of self-archiving. Authors are encouraged to electronically disseminate the post-print versions (version evaluated and accepted for publication), as it favors their circulation and dissemination, increases their citation and reach among the academic community.






