Application of the Ant Colony Algorithm to the Routing Problem

Authors

  • Edilma Judith Díaz Universidad de Panamá
  • Julio Trujillo-González Universidad de Panamá
  • Noriel Cosme Universidad de Panamá
  • Daniel Sánchez Díaz Universidad de Panamá
  • Abraham De Sedas Universidad de Panamá

DOI:

https://doi.org/10.37387/ipc.v14i1.435

Keywords:

Graph, Hamiltonian path, Traveling Salesman Problem, ant colony algorithm, tourism

Abstract

The main objective of this article is to determine a tourist route in Panama City through the implementation of an ant colony algorithm. This problem falls within the realm of Graph Theory, specifically in the classical challenge of finding a path that passes through multiple points of interest, complying with the restriction of visiting each point only once and ending at a specific location. If we add the additional constraint of seeking the shortest route possible, the problem becomes a Traveling Salesman Problem (TSP). Through this study, it has been concluded that the ant colony algorithm employed provides efficient solutions within a relatively short timeframe. Therefore, its implementation in other types of optimization problems is strongly recommended. The ant colony algorithm's ability to adapt and intelligently explore the solution space has proven to be highly effective in solving this tourist route problem in Panama City.

Downloads

Download data is not yet available.

Author Biographies

Edilma Judith Díaz, Universidad de Panamá

Departamento de Matemática, Facultad de Ciencias Naturales, Exacta y Tecnología, Universidad de Panamá, Panamá

Julio Trujillo-González, Universidad de Panamá

Departamento de Matemática, Facultad de Ciencias Naturales, Exacta y Tecnología, Universidad de Panamá, Panamá

Programa de Doctorado en Matemática Aplicada, Facultad Regional Multidisciplinaria de Chontales, Universidad Nacional Autónoma de Nicaragua, Nicaragua

Noriel Cosme, Universidad de Panamá

Departamento de Matemática, Facultad de Ciencias Naturales, Exacta y Tecnología, Universidad de Panamá, Panamá

Programa de Doctorado en Matemática Aplicada, Facultad Regional Multidisciplinaria de Chontales, Universidad Nacional Autónoma de Nicaragua, Nicaragua

Daniel Sánchez Díaz, Universidad de Panamá

Departamento de Matemática, Facultad de Ciencias Naturales, Exacta y Tecnología, Universidad de Panamá, Panamá

Abraham De Sedas, Universidad de Panamá

Departamento de Estadística, Facultad de Ciencias Naturales, Exacta y Tecnología, Universidad de Panamá, Panamá

References

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems (No. 1). Oxford university press.

Chen, S.-T., Wu, T.-H., Ye, R.-J., Lee, L.-C., Huang, W.-Y., Lin, Y.-H., & Wang, B.-Y. (2023). Application of Ant Colony Optimization Computing to a Recommended Travel Itinerary Planning System with Repeatedly Used Nodes. Applied Sciences, 13(24), 13221. https://doi.org/10.3390/app132413221

Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142).

Deneubourg, J. L., Aron, S., Goss, S. A. P. J. M., Pasteels, J. M., & Duerinck, G. (1986). Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D: nonlinear phenomena, 22(1-3), 176-186.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28-39.

Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs. Insectes sociaux, 6, 41-80.

Jiang, X., & Wang, L. (2022). Genetic Algorithm for Tourism Route Planning Considering Time Constraints. International Journal of Engineering Trends and Technology, 70(1), 171–179. https://ijettjournal.org/archive/ijett-v70i1p219

Panigrahi, B. K., Shi, Y., & Lim, M. H. (Eds.). (2011). Handbook of swarm intelligence: concepts, principles and applications (Vol. 8). Springer Science & Business Media.

Trujillo, J. (2019). Grafos hamiltonianos aplicado al turismo de Panamá. Investigación Y Pensamiento Crítico, 7(1), 109–113. https://doi.org/10.37387/ipc.v7i1.12

Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (Eds.). (2013). Swarm intelligence and bio-inspired computation: theory and applications. Newnes.

Published

2026-01-02

How to Cite

Díaz, E. J., Trujillo-González, J., Cosme, N., Sánchez Díaz, D., & De Sedas, A. (2026). Application of the Ant Colony Algorithm to the Routing Problem. Investigación Y Pensamiento Crítico, 14(1), 61–68. https://doi.org/10.37387/ipc.v14i1.435